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Optimal periodic control theory is an interesting and

relatively unexplored branch of optimization theory. There are

many applications identified in the literature and contributions to

the theory are increasing. In the first section of this chapter

preliminary remarks provide the general background and motivation

for this research. After a statement of the problem and its assump-

tions, previous theoretical development is briefly reviewed. Then

the objectives of this research and its scope are outlined. A

description of the notation conventions employed concludes the

chapter.

1.1 Preliminary Remarks

An optimal control problem, in general, can be reduced to

a non-linear two-point boundary value problem in terms of the state

variables and Lagrange multipliers. Except for relatively few cases,

an analytical solution to the boundary value problem is untractable.

One of the exceptions is the class of problems satisfied by the

static equilibrium solution. For many practical applications,

r reasonable models of plant processes are approximately constants.

Consequently, many control systems are operated "optimally" by

regulating them as near as possible to an equilibrium state.
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Improved performance frequently may be obtained by allowing

the state of one of these regulated processes to vary with time.

Notably in the field of Chemical Engineering, there are many appli-

cations studied in the literature [1, 2, 3]* in which periodic or

cycling operation provides improved performance over steady state

operation. This was the motivation for much of the early theoretical

work in optimal periodic processes by Horn and Lin [4).

Another particularly interesting example is the result

obtained by Speyer [51 in a controversy [5, 6, 7, 81 over an aerospace

problem. He showed that the static cruise point is non-minimizing

with respect to range factor (fuel rate per range rate) for several

dynamic models of aircraft. He also showed numerically that operating

along a cyclic but non-minimizing path provided better performance

J than operating at the static cruise point. He was not able to show

what the optimum path was, however, and to date, this problem remains

unsolved.

~1 Later numerical attempts 19] to obtain a periodic solution

to this problem uting standard optimization techniques such as

steepest ascent and conjugate gradient methods failed to converge.I Comparable results obtained in the initial research for this work

underscored the complexity of the particular application and motivat-

ed refocussing the present research effort on a more fundamental

*Numbers appearing in brackets refer to references listed in the
bibliography.

. ~ ~A .



and elucidating example. A specific problem has been constructed

which is composed of very simple dynamics and a performance index

allowing optimal periodic motion.

1.2 Statement of the Problem

The optimal periodic control problem is a subclass of

optimum control problems that has two distinguishing features.

First, the measure of performance (performance index or cost) is an

average over one period of the performance criterion. Second,

the periodicity constraint requires the initial and final states

to be coincident. The following formulation and assumptions define

the general optimal periodic control problem studied in this work.

Find the period, T, and the control, u, which minimize the

performance index,

1J T L(x,u)dt, (1.1)

!0

subject to the constraints of the system, defined by

x f(x,u), (1.2)

and to the periodicity condition applied at the boundary,

x(T) = x(O). (1.3)

The assumptions applicable to this problem are:

(1) The period, TE(O,+oo);

I d. . . . . . . . . .. .. . . .. . . . . . . . _, ] , l' ..
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(2) The state vector, x(t)EXCRn, where X is the set of

all permissible, continuous, T-periodic state functions in the n dim-

ensional state space;

(3) The control vector, u(t)EUCRm , where U is the set of

all permissible, piecewise continous, T-periodic control functions

in the m dimensional input function space; and

(4) The functionals f(.,-) and L(',-) and their first two

derivatives with respect to both arguments are continuous. Note that

the system, f, and the performance criterion, L, are both time in-

variant.

1.3 Historical Review

One of the earliest contributions to the theoretical

development of optimal periodic control is the work of Horn and Lin

[4]. They examine chemical engineering steady-state and batch

processes that can be improved by cycling. Using a formulation for

the problem similar to the previous section, they derive the first

order necessary conditions for optimality. For the optimal period,

they obtain the special form of the transversality condition which

states that the performance index must equal the variational

Hamiltonian evaluated along the extremal path. This special condition

for optimal periodic processes has not been previously exploited in

numerical procedures. Another early contributor to this theory is

Fjeld f101.

The practical problem of establishing whether the optimal
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steady state process can be improved by a suitable periodic process

has been analyzed by Bittanti, Fronza, and Guardabassi [11]. They

establish a new local sufficiency condition which involves trans-

forming a second variation quadratic expression into the frequency

domain and examining the result for non-negativity over the range

of all positive frequencies. This frequency test along with other

equivalent tests are presented in the work of Willems [12]. He

intensively treats the optimal control of linear systems with respect

to quadratic but not necessarily convex performance criteria.

The dynamic programming sufficiency conditions for the

optimality of periodic control processes are developed in a later

work by Iaffezzoni [13]. Global conditions are derived for the

optimal control from the Hamilton-Jacobi equation. Local suffici-

ency conditons for a weak minimum are derived by Bittanti, Locatelli,

and Maffezzoni [14] for periodic processes with a given period. They

use calculus of variations techniques similar to that of Bryson and Ho

[15]. They also develop sufficient conditions for the existence of

periodic solutions to the Riccati-type equations that result from

the second variation analysis.

In more recent work, first order necessary conditions are

reviewed by Gilbert [16, 171 for a very general formulation of the

optimal periodic control problem. He develops relationships between

elements of the solution sets for the optimal periodic control problem

and optimal steady-state problem. Bernstein and Gilbert 118, 19]

"4 identify an overlooked normality condition in the development of

- - -- . . .. .. . . . .... ... . .-- .\ 4 , , . . • . , -



6

the frequency test [1II. They also expand the test to include the

more general formulation of the problem above.

Much of the literature on optimal periodic control is

reviewed by Guardabassi, Locatelli, and Rinaldi [20] in an important

survey paper. Significant open aspects of the problem are identified,

some of which are specifically addressed in this work. Another review

by Bailey [211 emphasizes applications of the theory to a particular

chemical engineering problem.

Important theoretical work from other disciplines should

also be mentioned. There is considerable research devoted to the

study of periodic solutions (orbits) for dynamic systems. They

date back to at least 1890 and the extensive work by Poincari [22]

in celestial mechanics. With regard to finding periodic orbits,

the most studied dynamic system is the restricted problem of three

bodies. An excellent and thorough review of important work on this

problem is provided by Szebehely [231.

Since his earlier work 124] on periodic orbits near

equilibrium points of the restricted problem of three bodies, Broucke

has meticulously studied periodic orbits of a large variety of fourth

order dynamic systems. Much of this work is in preparation for

publication. Two extensive studies of periodic solutions to other

fourth order systems are by Contopoulos 125, 261 and Hinon 127].

A common element in all of these studies is the complex-

ity of the resulting periodic solutions. Families of solutions

exist which intersect at common critical solutions (bifurcation
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points), and the solutions densely pack large regions of state

space. Quasi-periodic solutions are also studied. This whole area

of dynamics is currently engrossed in intense research efforts.

The text by Meirovitch [281 provides numerous special

properties of Hamiltonian systems with periodic coefficients.

Properties of the monodromy matrix, the system transition matrix

evaluated over one period, are of particular interest to the

present work.

1.4 Purpose and Scope

The main objective of this research is to develop a

useful understanding of the structure and characteristics of

periodic processes resulting from the optimal periodic control

problem. An attempt has been made in this work to integrate applicable

portions of the theory and related experience developed in the fields

of analytical dynamics and celestial mechanics with that existing for

this problem derived under the discipline of optimal control theory.

It is hoped that this expansion of the theory will lead to its increas-

ed application and, in particular, to the development of improved num-

erical techniques for analyzing more complex systems.

There are three basic parts that comprise this study.

The first part involves the general theoretical background of the

problem. Necessary conditions, sufficient conditions, and tests

for the optimality of continuous, time-invariant, periodic, control
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systems are presented. Special properties, studied by analytical

dynamicists, of time-invariant, Hamiltonian systems with periodic

constraints are reviewed. Of particular importance are the proper-

ties of the monodromy matrix, a constant matrix determined by the

transition matrix for a periodic Hamiltonian system evaluated over

one period. Concluding the first part, contributions to the general

theory developed during the present research are derived. Included

is a new algebraic Riccati equation. It determines the initial

values for periodic solutions to the Riccati differential equation

generated from a second variation analysis. A similarity transform-

ation of the monodromy matrix separates the system eigenvalues into

the two diagonal blocks of the resulting matrix. This results in

the necessary condition for periodic extremal solutions that cor-

responding monodromy matrices have no distinct eigenvalues on the

unit circle. Local sufficiency conditions are then extended to the

free period case, and finally, properties of a periodic regulator

are developed.

In the second part of the study, a particular control problem

is defined that assures the existence of optimal periodic solutions for

some range of values of a parameter weighting the control. A

fairly comprehensive numerical investigation of this control problem

is conducted. Periodic solutions to the Euler-Lagrange equations

resulting from the first order necessary conditions are computed.

They form one parameter families which intersect at common "critical"

solutions or bifurcation points. Several solutions are examined

r
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along and between families to identify characteristic differences

that distinguish the families. The necessary condition for an optimal

period is applied which is satisfied by many of the solutions.

Sufficiency conditions are checked for these solutions by integrat-

ing the corresponding matrix Riccati equation over one period to

determine whether the Riccati variable exists during the entire

interval. Finally, a neighboring optimum feedback control system

is developed to operate near the optimal periodic process. The

initial state is perturbed, demonstrating the behavior of the

periodic regulator.

The final part of the study is the development of an

approximate analytical solution for the particular control problem

previously defined. A perturbation technique is used that results

in a solution in the form of an asymptotic series expansion. The

necessary condition for optimal period is applied leading to expres-

sions in the perturbation parameter and the time for the optimal

path, period, control, and performance index. These results are

compared to a linear analysis near the static solution and to

earlier numerical results obtained at the minimum solution.

Conclusions and recommendations for further research

complete the study.

1.5 Notation Conventions

0 Set theory notation is used sparingly in this study.j Symbols used and their intended definitions are listed below:
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(1) E signifies "is an element of",

(2) c signifies "is a subset of", and

(3) Rn signifies a real, Euclidean n-dimensional hyperspace.

Thus the notation TG(0,+w) means that T is an element of the open set

0 < T < +0, and the notation x(-)4 XCR n means that x is an n-vector

of the set of n-vectors X which is a subset of all vectors defined in

n-dimensional, real, Euclidean hyperspace.

Vector and matrix notation are used throughout this study.

The following conventions are used:

(1) Vectors are generally indicated by lower case letters

and, unless otherwise indicated, are column vectors. Components of

vectors are denoted by subscripts. Thus, the n-vector x and its com-

ponents are:

x
x

L n

(2) Matrices are indicated by upper case letters and

sometimes by elements enclosed in brackets. Elements of matrices

are denoted by double subscripts. Thus, the n row by m column

matrix A and its elements are denoted by

A S

L~anl ""anm

.1
IL-
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(3) Scalars are easily recognized as such, otherwise

they are specifically identified when used. Examples are the

independent variables, t and 1, for time and extended time, and

the indexing variables i, j, and k. Others are the performance

index, J, and the variational Hamiltonian, H.

(4) The transpose of a vector or matrix is denoted by the

superscript T, thus AT denotes the transpose of matrix A.

(5) The inverse of a square matrix is denoted by a super-

script -1, thus B -I denotes the inverse of matrix B.

(6) The first partial derivative of a scalar with respect to

a vector is a row vector designated by

Hx H 3H aH aH!x Ix U 1. ax 2" "ft

(7) The second partial derivative of a scalar with respect

to a vector is a matrix designated by

H . .. H
x u1  x u

Hxu 5u ax

xu 8i~JH . .. H
L XnU1  xn m

Note that the transpose of the matrix H is H

(8) The first partial derivative of a vector with respect to

another vector is a matrix designated by
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ax ax
f af

3x T

(9) The first partial derivative of a matrix with respect

to a vector is designated by

a f.
f uI, where iand j =, ... , nand k , .,m.

Other notation conventions used in this study are listed

below:

(1) The dot convention is used to designate a total deriv-

ative with respect to the independent variable, generally time. Thus

the following notation is equivalent,

dx

(2) The derivative operator, Dn is used in chapter six to

th
designate the n derivative with respect to the expanded time, T,

dT2

(3) Various notation conventions are used in the literature

to identify the variations of a function or functional. In this study

only the variation operators d and 6 are used, conforming to the
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predominant usage present in the literature. Unfortunately d is

also used to denote a differential along the path which provides a

source of confusion in the literature. The distinction between the

variation operators is that d represents a total variation while 6

represents a variation with time held constant. The following expres-

sions provide the functional relationship between them; figure 1.1

graphically identifies this relationship,

dx(tf) x(tf+dtf) - x (tf),

x(tf) + *(tf)dtf + lx(tf)dtf+.. x°o(t

- 6x(tf) + l°(tf)dtf + higher orders. (1.4)

0

In equation (1.4) and figure 1.1, x is the extreme (reference) tra-

jectory, x is a neighboring (comparison) path, and k° is the result,

to first order, of expanding i in a Taylor series about k0. In later

chapters the superscript "o" designates the optimal trajectory or

optimal solution.

:4

AA
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CHAPTER 2

CONDITIONS FOR OPTIMALITY

The conditions for optimality of a control process may be

derived by at least two dIfferent methods. The classical calculus of

variations approach is used in many texts [15, 29, 30, 311 to derive

the conditions for local optima; whereas, Bellman's dynamic program-

ming technique [32, 33, 34], using the Hamilton-Jacobi theory, also

provides global results. In the first section of this chapter the

existing first order necessary conditions for optimal periodic pro-

cesses are derived using the calculus of variations. The next two

sections review existing sufficient conditions for optimality derived

from each method. The frequency test, which determines whether or

not a periodic process can improve steady-state performance in a

control system, is presented in the final section.

2.1 First Order Necessary Conditons

The optimal periodic control problem defined in the first

chapter by equations (1.1) through (1.3) is rewritten here for con-

venience. Find the period, T, and the control, u, which minimize

the performance index,

J = T L(x,u)dt, (1.1)

subject to the following system constraint,

15

I.1 15. , . . : l ... . .. . ... . __
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= f(x,u), (1.2)

and the periodicity condition applied at the boundary,

x(T) = x(O). (1.3)

The system constraint and periodic boundary conditions

can be adjoined to the performance index with Lagrange multipliers

forming the augmented performance index,

3 vTW(x(T),x(O)) + 1S [H(x,u,A)-ATi]dt. (2.1)

The new functions introduced by equation (2.1) are the variational

Hamiltonian,

H(x,u,A) S L(x,u) + ATf(xu), (2.2)

and the boundary condition null identity,

''(x(T),x(O)) = x(T) - x(O). (2.3)I
The n-vector Lagrange multipliers, V and A, multiply the null

identities formed from the boundary condition equation (1.3) and

the system constraint equation (1.2) respectively.

First order necessary conditions for the optimal periodic

control are now derived. From fundamental arguments in the calculus of

variations the first variation of the augmented performance index must

vanish. Written as the sum of three terms, the first variation is

V .. - . .. . . . .. .•. .. .. . ..
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dj = d(vTY) + d() [H-A A*dt + d( [sH-ATidt). (2.4)

Expanding the initial term of the first variation provides

d(vTW) = dvT' + VT[x(T) dx(T) + x(0) dx(0)].

This may be simplified by recognizing, from equation (2.3), that

wx(T) = I and Wx(0) = -1. Substituting these into the above expres-

sion for the first term gives

d(V TW) = dv T W + V T[dx(T) - dx(0)I. (2.5)

Operating as indicated on the second term of equation (2.4) yields

TT .T TH d

d( ) [H-ATk]dt = [H-XT*1dt

Simplifying this by using equations (1.1), (1.2), and (2.2) gives

IT XT 
d

d() [H-A Idt = - . (2.6)

The expansion of the last term of equation (2.4) is common to free

terminal time optimal control problems,

r d( fH- TIdt) = 1(H-ATi)dT
0

+ JH6x + H 8u + 6XT( -T) AT6*]dt.+T 0 x u
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Integrating the last term of the right hand integral by parts and using

the relationship (valid to first order), 6x = dx - idt, reduces the

previous equation to

I T [H * ) - T t tT
-( xdt)= jHdT +(X dx)

O t=O

+ + Hu6u + 6kT (H -*)]dt (2.7)

Combining the results for the three terms given by equations (2.5),

(2.6), and (2.7) provides the following expression for the first

variation,

t T
T 1 T IT

dJ dv TI + -(H-J)dT + [(v + A (t))dx(t)J
t 0

+ [(H 6 + HuU + 8AT(HA-*)1dt. (2.8)

The criteria that the first variation must be zero when

evaluated along an extremal path will now be examined. The terms

which include the Lagrange multiplier variations vanish since their

coefficients are the null identities previously defined. Recognizing

that using Lagrange multipliers permits treating all other variables

as though they were independent allows the remaining coefficients of

variations in equation (2.8) to be isolated by appropriately selecting
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admissable comparison paths. Thus each of these coefficients must also

equate to zero when evaluated along an extremal path.

The Euler-Lagrange equations result from requiring the

coefficients of the variations in the integral of equation (2.8)

to vanish. They are:

= HT = f(x,u), (2.9)

= -HT = -fT(x,u)A - LT (x,u), (2.10)

= HT =  f T(xu)X + Lu(x,u). (2.11)

The fixed point relationships are established by equating the remain-

ing coefficients of the equation to zero. The coefficient in the

first term is the boundary null identity and gives back the pre-

scribed boundary conditions,

x(T) = x(O). (2.12)

The natural boundary conditions, i.e., transversality condition, comes

from the remaining terms,

(T) = X(O) = -Tv, (2.13)

H(T) = H(O) = Jo. (2.14)

Any periodic solution to the two point boundary value

problem, equations (2.9) through (2.13), is an extremum of the problem

.1J

. . ,
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when the period is specified. The condition (2.14) relating the

variational Hamiltonian and the performance index, evaluated along

the optimal path is the special condition, first derived by Horn and

Lin [41, for testing the optimal period. For the case where H is auto-

nomous, which is assumed here, the Hamiltonian is a constant on any

extremal path, and equation (2.14) is valid for all times. This

condition is obviously not affected by the particular choice of the

initial time.

2.2 Sufficient Conditions for a Local Minimum

A set of sufficient conditions for local optimality of the

periodic control problem, defined by equations (1.1), (1.2), and (1.3)

with the period T given, is reviewed. These conditions were initially

derived by Bittanti, Locatelli, and Maffezzoni (141 using first and

second variations and properties of periodic functions. In the fol-

lowing restatement of the sufficient conditions, the function *A(T,O)

is the transition matrix for the system = Ay evaluated over one

period, and the control u°(.) is a piecewise-continuous, T-periodic

function in the input function space. The superscript "o" designates

the optimum solution.

The control u0 (-) is a local minimum if the following con-

ditions are satisfied:

(1) The Euler-Lagrange equations, (2.9) through (2.11),

the prescribed boundary condition, (2.12), and the

transversality condition, (2.13), are satisfied;

u°() is a solution to (2.11) for 0 1 t 5 T, and
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x °) and Ao() are the corresponding solutions to

the resulting two-point boundary value problem;

(2) No eigenvalue of f o(T,O) is equal to one;

x

(3) The strong form of the Legendre condition is satisfied,

H 0 > 0, for 0 < t < T;
uu -

(4) A bounded symmetric solution to the following Riccati-

type equation exists for 0 < t < T,

-PA -ATP + PBP + C, (2.15)

0 0 0 -0where A f -f(H . ) H Ix u( uu ux

) = ( o); and(2.16)

(5) No eigenvalue of z(TO) is equal to one, where

Z = -(H 0  +f P). (2.17)
x u i x u

It will be shown in chapter four that the last condition (5)

as stated in [141, is never true since *z(T,O) always has a unit eigen-

value. A necessary condition for optimality is derived from the

i 1
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eigenvalues of this matrix. Also, an algebraic Riccati equation is

determined that provides the initial conditions for periodic solutions

to equation (2.15) in condition (4).

2.3 Hamilton-Jacobi Theory

By extending the Hamilton-Jacobi theory to periodic optimiza-

tion problems, Maffezzoni [13] derived a sufficient condition for opti-

mality of the problem defined by equations (1.1), (1.2), and (1.3)

with the period, T, free. It is assumed that the solution V(t,x) to

the Hamilton-Jacobi equation,

+in H(X,Vx(t,x),u) = 0, (2.18)

is twice continuously diffentiable with respect to both of its argu-

ments throughout phase space. It is also assumed that the varia-

tional Hamiltonian is regular, i.e., that it has a unique minimum

with respect to the control for given values of its arguments. With

these assumptions, a statement of the sufficient condition follows.

If a real function C(-) exists relating solutions to (2.18)

in the form

V(0,x) - V(T,x) = C(T), (2.19)

and u (x,V x(t,x)) is the control that minimizes the Hamiltonian in

equation (2.18), for all xeX, then the optimal control relative to x

and the specified T is

0 0 0u°(t) = u (x (t),Vx (x (t),t)), (2.20)x220
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where uo and x 0 denote the optimal control and state relative to the

period.

A corollary relationship to the previous condition is also

developed in this work. Under the previous assumptions the optimal

performance relative to x and T can be expressed as

0 V(Ox0 ) - V(T,x ) = C(T). (2.21)
T T

2.4 The Frequency Test

The question of whether the optimal steady-state operation

of a given plant can be improved by a cycling or periodic process is

an important preliminary concern. This question has been considered

in much of the previous work on optimal periodic control processes.

From a relaxed steady-state control theory approach, viola-

tion of the maximum principle by the optimal steady state control

leads to an optimal solution of the bang-bang or chattering type.

Reference should be made to Horn and in [41, Bailey and Horn [11,

and Gilbert [16, 351 for further discussion and examples.

A second variation analysis by Bittanti, Fronza, and

Guardabassi [111 established a frequency domain local sufficiency

condition for determining whether the steady state control of a system

can be improved by cycling. However, the condition does not provide

sufficient information to determine what cyclic or periodic process

is best. An overlooked normality (controllability) condition was

identified by Bernstein and Gilbert [18J in a somewhat more general

treatment of the same problem.
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The frequency test is stated here without proof. For the

optimal periodic control problem defined by equations (1.1), (1.2),

and (1.3), where the system is assumed to be controllable, let

A f (x,U), B S fu(x°,U
o U

0 00 00 0P H xx(X ,u, A), Q H xu(XU,),

R = H uu(xU,A ° ) (2.22)

and no eigenvalue of A has a zero real part. Willems allows any matrix

A in his work (12]. The superscript on x, u, and A designates the

optimal solution in the class of constant solutions of the optimal

periodic control problem. Form the (n x n)-Hermitian matrix,

11(w) = GT(-jw)PG(jw) + Q G(jw) + G (-jw)Q + R, (2.23)

where G(s) S (sI-A) B, w is frequency, and j = 41. If 11(w) is not

negative definite for all w, then the optimal control for the problem

is not constant, but belongs to the class of time varying periodic

controls.



CHAPTER 3

HAMIILTONIAN SYSTEMIS WITH PERIODIC SOLUTIONS

The optimal periodic control problem can be expressed in

the standard canonical form of a Hamiltonian system by functionally

eliminating the control from the Euler-Langrange equations. The

transition matrix of this Hamiiltonian system evaluated over one or

an integral multiple of the period and the corresponding eigenvalues

of this matrix have properties which are exploited in the theoretical

developments of the next chapters. These important properties, as

well as the fundamental properties of the Hamiltonian systems from

which they are derived, are reviewed in this chapter. There are a

vast number of references available that address different portions

of the material covered here in various degrees of completeness.

The intent of this chapter is to include in one place, in a consistent

notation, a statement and derivation of properties that are fundamental

to new theory developed in later chapters of this work.

3.1 Hamiltonian Structure of the Problem

In general the optimal periodic control problem can be

expressed in the familiar canonical form of Hamilton's equations of

p. motion. The necessary condition for all extrema, that the first

variation of the performance index vanish, yields the Euler-Lagrange

equations,

21 25
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i = HT(x,u,),
(3.1)

= -HT (x,u,X), (3.2)
x

0 = RT(x,u,X), (3.3)

subject to the periodicity conditions at the boundary, where T is the

period,

x(T) x(O) and A(T) X(O). (3.4)

An expression for the control, u, in terms of the state

variables and Lagrange multipliers, x and A, may be determined (at

least implicitly) from the last of the Euler-Lagrange equations (3.3).

Eliminating the control from the remaining two equations reduces the

system of equations to the desired canonical form,

Hx(x,u(x,X),X), (3.5)

X
T -H (xu(xA),A). (3.6)

* 1In terms of the dynamicist, the variational Hamiltonian

H(x,A) and the two n-vectors of the state, x, and the Lagrange multi-

pliers, A, are respectively the Hamiltonian function and the two phase

space n-vectors of coordinates and momenta.

It is convenient to make a further simplification. First

define the (2n x 2n) skew symmetric matrix, K, which is commonly

called the fundamental symplectic matrix,
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K [0 J], (3.7)

where I is the n square identity matrix. By inspection, the funda-

mental symplectic matrix satisfies

K "I = T = -K. (3.8)

Now Hamilton's equations may be written in the simplified form

= T = Y(y), (3.9)
Y

where y is the 2n vector composed of the phase space components x

and A and is subject to the periodicity condition

y(T) = y(0). (3.10)

From equation (3.9) it is apparent that the tangent to a phase space

trajectory is a function of the position vector, y, only. Hence, there

is only one trajectory through a point in phase space, and each trajec-

tory is fixed. It will be convenient later to identify these trajec-

tories (periodic solutions to the Euler-Lagrange equations) by their

initial conditions. Note that the system is assumed autonomous; that

is, the Hamiltonian is not an explicit function of the time.

Another well known property of an autonomous system is that

the Hamiltonian is a constant of the motion. This is easily shown by

substituting in the expression for the time derivative of the

Hamiltonian,

.1i

_ _ l j '4 * - l
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I(X, X) = x + Hk+Ru (3.11)

the equations of motion, (3.1) through (3.3), which gives

HT T (3.12)
H~xX = Tx11 + Hh(-HX)

Since the scalar inner product is invariant to the transpose, equation

(3.12) reduces to

H = 0, (3.13)

and the Hamiltonian is a constant of the motion.

The first integral may be used to reduce by one the order

of the differential equations that define the system. Any variables

in the Hamiltonian function is expressable in terms of a constant

parameter and the remaining variables. Given any set of initial

conditions the constant parameter is uniquely determined. A further

reduction in the order of the system is possible by eliminating the

independent variable, time, from the equations. The computational

scheme employed in this work to determine periodic solutions to the

Euler-Lagrange equations exploits the first of these relationships and

in effect reduces the degree of the problem by one order.

3.2 Symplectic Properties and the Transition Matrix

Some fundamental characteristics of all Hamiltonian systems

are associated with the properties of symplectic matrices. To begin

this section, the definitions of two types of symplectic matrices and
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their corresponding properties are provided. Then the transition

matrix of a Hamiltonian system, along with some of its basic proper-

ties, are derived. Finally, it is shown that the transition matrix

of a Hamiltonian system is symplectic.

First, the (2n x 2n) matrix, B, is defined to be a symplec-

tic matrix if

TBKB K, (3.14)

where K is the fundamental symplectic matrix (3.7) defined in the

previous section. Second, the (2n x 2n) matrix, C, is a skew symplec-

tic matrix if

KCK "  -CT. (3.15)

With the use of the symplectic matrix relationships expressed in (3.8)

many equivalent forms of (3.14) and (3.15) may be generated.

To illustrate properties associated with these matrices,

partition each matrix, B and C, into four (n x n) submatrices which

then can be expressed as

B 1 B 12] and C = 11 C12 (3.16)
21 B 22J 21 C 22J

Substituting the partitioned matrices (3.16) into equations (3.14) and

(3.15) provides the following properties f'r the symplectic matrix B,

B B = (BlB12)T (3.17)
11 12 11 12
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T = TT (3.18)
B22 B21 (B 2 2 B2 1) (

T T = , (3.19)
11B22 B 12 21

and for the skew symplectic matrix C,

C CT  (3.20)

12 12'

T
C = C21, (3.21)

C T -C (3.22)11l =-22.

One important result of equation (3.22) is that the trace of a skew

symplectic matrix is zero.

Returning to the Hamiltonian system, first write its linear

variational equations. This may be done by considering the result of

a small perturbation, 6y, from a periodic solution, y, to the equations

of motion (3.9). Substituting the perturbed solution into the equa-

tions of motion gives

+ 0 = KH (y+6y), (3.23)

which may be expanded in a Taylor series about the nominal solution,

y, resulting in

+ = K[HT + H 6y + order(6y2)]. (3.24)
y yy

Neglecting 6y terms of order two and higher and using equation (3.9)

II
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in the result gives the familiar form of the linear variational

equations,

6 = A(t)8y, (3.25)

where A(t) = KHyy and the matrix of second partials, Hyy, is evaluated

on the nominal solution y(t). Note that the matrix Hyy is a real,

symmetric matrix with each element either periodic of period T or

constant. Note also that the matrix A(t) is skew symplectic as may be

shown by substituting the matrix into equation (3.15) and reducing the

result to the identity below:

K(KH yy)K1 = (KH y)T

-H K 1 = -H KT
Yy yy

T T
-H K T . H . (3.26)i-yy = yy

The relationships for K expressed in equation (3.8) and the symmetry

of H were used in the above equations (3.26).

YiA fundamental solution matrix, *, may be constructed by form-

ing a square matrix composed of 2n columns of independent solutions to

the variational equation (3.25). The solutions are real and in general

not periodic. This matrix is also not unique; the relationship between

any two fundamental matrices being

rl(t) = 2 (t)C, (3.27)

where C is a constant matrix for all t. The fundamental matrix, *i'

is called a principal fundamental matrix when the constant matrix
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is the inverse of *2 evaluated at some reference time to. This very

useful, special case of is also called the transition matrix,

typically expressed as 0(t,t0 ). Rewriting equation (3.27) in the

following form defines the transition matrix,

O(t't0 ) *(t)f' (t 0 ). (3.28)

Note at the initial time, t = to, the transition matrix reduces to the

identity matrix.

From its construction it is obvious that the transition matrix

satisfies the variational equation (3.25), thus

(t,t 0 ) = A(t)t,t0). (3.29)

Two useful rules for operations on transition matrices are now stated.

The composition rule shows how transition matrices may be combined,

4(t2t = 1(t 2 ,tl) (t 1 ,tO). (3.30)

The inverse of a transition matrix, is functionally obtained by inter-

changing its arguments,

*'(t 2 ,t 1 ) = 4(tl,t 2 ). (3.31)

Both rules are easily verified by application of the definition of the

transition matrix given by equation (3.28).

The following relationship between the determinant of the

transition matrix and the trace of the coefficient matrix At) is

attributed to a combination of Abel, Jacobi, and Liouville [36]
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det 40(t,t)= expI trA(a) da] (3.32)

For a Hamiltonian system it has been shown in (3.25) and (3.26) that

the coefficient matrix A(t) from the variational equations is skew

symplectic, hence the trace of the matrix A(t) is zero. From equation

(3.32), the determinant of the transition matrix of a Hamiltonian

system is one.

An important property of the transition matrix of a

Hamiltonian system is that it is symplectic. As a consequence, the

transition matrix, 4(t,t0), must satisfy equation (3.14) or an equiva-

lent form, such as

KOTK-1 = 4-1. (3.33)

This equality may be verified by showing that KOT K is a solution to

the adjoint system,

(tt 0 ) = -0 1(t,t 0 )A, (3.34)

where A is the coefficient matrix from (3.25). The adjoint equations

may be determined by operating on the identity

O(t't 0 )o (t,t) = I. (3.35)

Taking the time derivative and rearranging, results in the following

relationship,

.1
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(t,to)o _(t,t 0 ) z -@(t,to )W (t't0 ). (3.36)

l* Using equation (3.29) to eliminate # in the left-hand side of equation

(3.36) and then premultiplying both sides of the equation by gives

the differential equation for the adjoint system previously identified

in equation (3.34).

To verify equation (3.33), replace 4-1 with K TK"1 in equa-

tion (3.34). This gives the following result,

K4TK "1 = -K4,TK 'A. (3.37)

Eliminating -T in equation (3.37) using equation (3.29) and postmulti-

plying both sides of the resulting equation by K gives

KOTAT = -KTKlIAK. (3.38)

Using the skew symplectic property of A given by equation (3.15),

the above equation is reduced to an identity. This shows KTK"1

satisfies the adjoint equations.

Investigating initial conditions, when t = to, the follow-

ing relationships of the transition matrix may be written,

0(toto) 0 T(to,to) =41 (to,to) = I, (3.39)

K (t0,t0)K = KIK = I. (3.40)

Since K*TK "1 and *-1 satisfy the same adjoint equation (3.34) and

they are equal at one point (3.40), they are equal everywhere. Hence
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the equality of equation (3.33) is verified and the symplectic prop-

erty of the transition matrix of a Hamiltonian system has been demon-

strated.

3.3 Eigenvalues of the Transition Matrix

The basis of many of the properties of a linear system is

its eigenvalues. They provide an intrinsic characterization of a

matrix. Of principle interest are the relationships associated with

a special matrix, the transition matrix. In this section some funda-

mental concepts are reviewed, a few useful relationships between

matrices and their eigenvalues are presented, and finally an important

property of the eigenvalues of a transition matrix is established.

Generally the eigenvalues of a matrix are introduced by ref-

erence to the following matrix relationship,

i4t = pt, (3.41)

where V is a known (2n x 2n) matrix, C is a nonzero 2n vector, and p

I is a constant scalar parameter. The particular values of p that satisfy

this relationship are the eigenvalues of 0. The vectors C correspond-

ing to each of the eigenvalues are the eigenvectors. They are deter-

mined in direction only and form a set of basis vectors which define

the 2n phase space of the system.

The matrix equation (3.41) may be rewritten as a set of 2n homo-

geneous equations,

[0 - pI]C = 0. (3.42)
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Nontrivial solutions for C exist if, and only if, the inverse of the

coefficient matrix [0-pI] does not exist [36]. This statement leads

to the characteristic equation of * given by

det [0 -pI) = 0. (3.43)

This expression is a polynomial equation of order 2n in the scalar

parameter p. Its 2n roots are the eigenvalues of 0 and may be real or

complex.

When the elements of 0 are all real, it is easy to show that

complex eigenvalues occur only in conjugate pairs. Taking the conju-

gate of elements of both sides of equation (3.41) results in

= , , (3.44)

where 0 is unchanged by the operation since its elements are real, and

the bar above the remaining elements indicates their conjugate. Writ-

ing the characteristic equation of 0 from equation (3.44) gives

det [0 -pI] = 0. (3.45)

This shows that the conjugate of a complex eigenvalue of a real matrix

is also an eigenvalue of that matrix. As a result the complex eigen-

values of the transition matrix must occur in conjugate pairs.

Some useful relationships between any matrix and its eigenvalues

may be obtained by comparing the characteristic equation of the matrix

to its factored form in terms of its roots (eigenvalues),

det [0-pI] (p -p)(P2-) (I'n-p). (3.46)

1 2_ .. . / .---- 4
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When p is set equal to an eigenvalue, both sides of equation (3.46)

are zero as expected. Letting p = 0 gives an expression for the deter-

minant of the transition matrix,

det 4 = pIP2 "' P2n' (3.47)

i.e., the determinant of a matrix equals the product of its eigen-

values. Expanding both sides of equation (3.46) and equating like co-

efficients of p gives 2n relationships including (3.47). From the co-

efficient of p to the 2n-I power, it is determined that the trace of

the matrix equals the sum of its eigenvalues,

2n 2n
trace 4 = 7 *ii = I pi' (3.48)

where 4ii corresponds to the diagonal elements of .

The following three relationships are applicable to any transition

matrix 0 and its eigenvalues. They lead to an important property of the

transition matrix of a Hamiltonian system. The first relationship is

that the eigenvalues of -1 are the inverse of the eigenvalues of 4.

This is shown by premultiplying equations (3.41) by 4-1, dividing the

result by p, and rearranging as follows.

OC = pC, (3.41)

0 1 (3.49)

r -- i l ...
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The second relationship is that eigenvalues of 40 are invariant to

a similarity transformation. The operation C*C" , where C is a

constant matrix, is a similarity transformation of 0. Premultiplying

equation (3.41) by C, then inserting the identity expression, C IC, in

the left-hand side of the result verifies this relationship as follows

t= pt, (3.41)

Opt= pC,

C4,C -1(C) = P(Ct). (3.50)

The third relationship is that eigenvalues of 41 are invar-

iant to the transpose. This may be shown by comparing the character-

istic equation (3.43) for P with that for its transpose, *T. From the

construction of the two equations, it is obvious, by interchanging

row and column operations respectively that the resultant equations

in terms of p are identical. Hence the eigenvalues of 0 are also the

eigenvalues of 0T

Applying the previous result (3.50) to this result and choos-

ing the matrix C to be the fundamental symplectic matrix, K, gives

KOT'I (KC) = V(KC). (3.52)

When 40 is the transition matrix of a Hamiltonian system, the above

equation (3.52) reduces, using its symplectic property (3.32), to

I *"(KC) = p(KC). (3.53)

r (-S
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-1
This means that 0 and P have the same eigenvalues. But the eigen-

values of 0-1 were also shown to be the inverse of the eigenvalues of

0. This implies the very important result for a Hamiltonian system,

namely that the eigenvalues of the transition matrix 0 and its inverse

must occur in reciprocal pairs.

For physically realizable systems the elements of the transi-

tion matrix are real. This is derivable from the all real set of vari-

ational equations determined earlier by tacitly assuming a physically

realizable system. Combining the property that complex eigenvalues of

real valued matrices occur in conjugate pairs with the reciprocity

property of eigenvalues of the transition matrix, strong restrictions

on the complex eigenvalues of a transition matrix occur.

A single pair of complex eigenvalues are restricted to the

unit circle in the complex plane. This is shown by first applying the

reciprocity property to a pair of complex eigenvalues, where j =i,

a + jb, (3.54)

= (3.55)
112 2 2

1 Pl a +

In order that p1 and p2 also be conjugates, the denominator in (3.55)

must be one. Since the denominator is the square of the magnitude of

either eigenvalue, it is apparent that the eigenvalues lie on the unit

circle.

For more complicated systems, the complex eigenvalues may
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occur off the unit circle in doubly coupled sets of four eigenvalues.

Each set is composed of two pairs of complex conjugates, which may also

be arranged as two pairs of reciprocal eigenvalues. Many other config-

urations are possible. The important point is that off the unit circle

complex eigenvalues are restricted to occur in groups of at least four

coupled eigenvalues. An example for four eigenvalues would be the re-

lationships (3.54) and (3.55) plus the following two,

P3  a - jb, and (3.56)

p = a + jb (3.57)

3.4 Properties of the Monodromy Matrix

Many of the properties of Hamiltonian systems with periodic

solutions involve the monodromy matrix. This special constant matrix

maps the transition matrix forward one period in time. After deriving

the relationships which define the monodromy matrix, three of its

important properties will be derived to conclude this chapter.

J Earlier it was shown by construction that the transition

matrix satisfies the variational equation (3.29). Since the coeffi-

cient matrix, A(t), is periodic of period T, then *(t+T,to) is a

p solution to the same linear differential equations as *(t,t 0 ). From

equation (3.27), the two solutions must be related by a constant

matrix, r, as

*(t+T,t O) = *(t,to)r. (3.58)

it..~ ~ 0-------.-------
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Evaluating equation (3.58) at the initial time defines the monodromy

matrix r,

r = (to+T,to). (3.59)

The arguments will generally be dropped for the monodromy matrix,

since it is a constant. It is important to point out that the mono-

dromy matrix varies with changes in the initial time and for multiple

periods. These relationships will be established in the two following

properties.

The first property of the monodromy matrix to be presented

here follows directly from its definition in equations (3.58) and

(3.59). The relationship of the monodromy matrix to its associated

transition matrix is determined by replacing t, in equation (3.58), by

t+T, and using (3.58) again for the last relation,

*(t+2T,to) = *(t+T,t 0 )r = *(t,t 0 )F
2 . (3.60)

Continuing this process gives the general formula,

nP*(t+nT,t 0 ) = *(t,to)r n , (3.61)

which defines the functional relationship for the mapping of the

transition matrix over multiple periods by the monodromy matrix.

The second property shows that even though the monodromy

matrix is dependent on the initial time, to, its eigenvalues are in-

variant to such changes. Using the composition rule, the relationship

between the monodromy matrix initialized at some time t to the one at

. ...............
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some other time t2 may be written as

O(t+T,tI) = 0(tI+T,t 2+T)*(t 2+T,t2) (t2,t1 ),

r(T,tI) = O(tl+T,t2+T)r(Tt 2 )1(t2 ,tl). (3.62)

Using the composition rule and the matrix inverse rule for the first

matrix on the right hand side of (3.62) gives

(t 1 +T,t 2 +T) = (t1+T,t0)[4(t 2+T,t0 )]1 (3.63)

From the definition of the monodromy matrix and the previous rules,

the following result for (3.63) is obtained

1-1

*(tI+T,t 2 +T) = *(tlt 0)r(T,t 0)[(t 2,t0)r(T,t0)]

= (tl,t 0)rr-0,t2o

= 0(tl,t 2 ). (3.64)

Equation (3.62) can now be expressed, using (3.64) and the transition

matrix inverse rule as

r(T,t1) = 'l(t2 ,tl)r(T,t2)(t 2,t). (3.65)

This expression shows that the monodromy matrix for a Hamiltonian

system initialized at one time is related to the monodromy matrix of

the system initialized at another time by a similarity transformation.

Thus from equation (3.50), the eigenvalues of the monodromy matrix are

i1
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invariant with respect to its initialization.

The third property shows that there are at least two unity

eigenvalues of the monodromy matrix for any autonomous Hamiltonian

system with periodic solutions. Using the system equations expressed

in (3.9) and (3.10), rewritten below for convenience,

S Y(y), (3.9)

y(t+T) y(t), (3.10)

the variational equations, also represented by equation (3.25), can be

expressed as

6i = a 6y. (3.66)

Taking the time derivative of equation (3.9) gives

3 y  
(3.67)

which shows that k(t) is a solution to the variational equations (3.66).

From equation (3.27) it is apparent that a constant vector C exists

such that

(b t ,(t,t 0)C, (3.68)

where 0(t,t 0 ) is the transition matrix related to the variational
equations (3.9). In other words, k(t) must be a linear combination

of the columns of the transition matrix. At the initial time t = to*

the transition matrix reduces to the identity matrix and the constant

.......
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matrix C = y(t0). Then equation (3.68) may be rewritten

y(t) = O(t,to)y(to). (3.69)

After one period, T, equation (3.69) can be expressed using equations

(3.9), (3.10), and (3.68) as

Y(t0 ) = 1(t0+T,to)Y(tO )

y(t0 ) = r(T,to)Y(to). (3.70)

Rearranging equation (3.70) in the form of equation (3.40) gives

[r - Ily(t O) = 0, (3.71)

which shows that the monodromy matrix has one unity eigenvalue. The

eigenvector corresponding to this unity, eigenvalue is the tangent

vector to the periodic path of the solution. It is defined in the 2n-

phase space of the system at the initial time. A second unity eigen-

value of the monodromy matrix must also exist due to the previously

reviewed property that the eigenvalues of a Hamiltonian system must

occur in reciprocal pairs. As was shown in the first section of this

chapter and as is implied by the two unity eigenvalues, the order of

the system is reducible by at least two.

SIl



CHAPTER 4

NEW THEORETICAL RESULTS

Contributions to the general theory of optimal periodic

control developed in the course of this research are presented in this

chapter. A principle result is derived in each of the following four

sections. In the first section, a new algebraic Riccati equation is

derived, which determines the initial conditions for generating the

periodic solutions of the Riccati differential equation associated

with the second variation of the performance index. An extremely use-

ful similarity transformation of the monodromy matrix is developed

from this result. In the second section, a large class of extrema

for the optimal periodic control problem is shown to be non-optimizing.

The symplectic properties of the monodromy matrix and the previous

similarity transformation are used to obtain this result. A weak

sufficiency condition from the second variation is developed for the

free period case in the third section. Finally, a periodic regulator

and its control law are determined by investigating optimal paths

near a local periodic optimum.

4.1 An Algebraic Matrix Riccati Equation

A new algebraic equation is derived relating the Riccati

variable and elements of the monodromy matrix. The variational equa-

tions, which determine the transition matrix for the state variables

and Lagrange multipliers, are obtained from the Euler-Lagrange

45
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equations, (2.9) through (2.11), by taking variations about an extre-

mal solution. Retaining only the linear terms in the variations gives

the following 2n + m equations,

6x = fx(t)6x + fu(t)6u, (4.1)

6A = -H (t)6x - H (t)6u - f (t)6A, (4.2)
xx xu x

0 = H (t)6x + H (t)6u + f (t)6k, (4.3)
ux uu u

where the partials have been evaluated along the extremal path.

Provided H is nonsingular, the m control variations, 6u,uu

may be written from (4.3) in terms of the n variations in the state,

6x, and the n variations in the Lagrange multipliers, 6A, as

6u = -(Huu) -[H6x + fT 6X . (4.4)

Eliminating the control variations (4.4) from the 2n equations (4.1)

and (4.2) determines the variational equations in the form of (3.25),

6f Hxx+ fu (H uu)IHux f u(uu) f u 8x
(4.5)

where again the partial derivatives are evaluated along the extremal

path. Just as in equation (3.25), the elements of the coefficient

matrix of (4.5) are periodic functions of time with the same period,

T, as the extremal solutions.



47

The transition matrix may be obtained by integrating equation

(3.29) using the initial condition, O(to,tO) = I, and the coefficient

matrix from equation (4.5). This results in

O(t't0) 0 11t,to) * 12 (t,t 0 ) (4.6)L 2 1 (t,to) " 2 2 (t,t
0 )J

where the partitions are each (n x n) submatrices. This matrix maps

perturbations in the state and Lagrange multipliers from some initial

time, to, to a subsequent time, t, as follows,

6x(t) 1 [01l(tto) 12(trt O [6x(to)1 (4.7)
6,k(t)] L21 (t'to 0 022 (tt 0o) Wto0)j

An expression relating a perturbation in the state to one

in the Lagrange multiplier for any time can be determined by manipulat-

ing equation (4.7). Assume the following general relationship,

8A(t) = P(t) 8x(t), (4.8)

where P(t) is an (n x n) matrix with elements, continuous functions of

time. Using this relationship in equation (4.7) to eliminate 6X(t0)

results in,

6x(t) 1 ll(t,to) + P12(tto)P(t0 )

S(t)J =[ 2 1(t,tO) + *22 (t,to)P(to)J 6x(t0), (4.9)

which for convenience may be abbreviated as

6x(t) 1 (t)

.A.t) J x(t0). (4.10)



48

Provided [X(t)] "1 exists, the variation of the state at the

initial time, 6x(to), can be eliminated in equation (4.10) leaving the

result

6A(t) = A(t)[X(t)] I6x(t). (4.11)

By comparing equations (4.8) and (4.11), the following expression for

P(t) can be written,

P(t) = A(t)[X(t)] "1  (4.12)

which in expanded form is,

P(t) [42 1(t,t0) + 022(t't0)P(t0))

-1
11 " (t't0 ) + *12 (t,t0)P(t0 )] -

. (4.13)

This expression for P(t) represents the solutions to the Riccati-type

differential equation (2.15), rewritten below, which was derived from

the second variation,

P(t) = -fT + R(H )-If jp(t)- P(t)[f x - fu(H )IH1 H]x xu uu ux u uu tax

-I T -1+ P(t)(f u(Huu ) f uIP(t) - H xx+ H xu(H uu) HM. (2.15)

The details of showing (4.13) satisfies (2.15) are presented in

appendix A.

The transpose of P(t) in the second and third terms of equation

(2.15) has been dropped since P(t) is necessarily symmetric. This is

easily shown by taking the transpose of both sides of the equation.
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The result is the same differential equation for PT(t) as for P(t),

which implies that P(t) is symmetric if it was initially symmetric,

PT(t) = P(t). (4.14)

Now assume, that a periodic solution exists to the Riccati

type equation (2.15) which has a period, T, the same as or an integral

multiple of the period of the coefficients of P in the equation. An

expression for the initial value matrix of the Riccati variable, P(t0),

may be obtained by evaluating equation (4.13) at t = T and using the

periodicity condition P(t0+T) = P(t0 ). This provides

P(t0 ) = [ 21(t0+T,t0 ) + P2 2(t0+T,t0)P(t0 )]

+ *12(t0+T,t0 )P(to)] OW (4.15)

Using the relationship (3.56), between the monodromy matrix

and the transition matrix, in the above expression and then rearranging

terms results in the following algebraic Riccati equation

P(t0 )r12P(t0 ) + P(t 0  )r 2 - 22 Ct0  21 = 0. (4.16)

Solutions to this equation provide the initial conditions, P(t0 ), that

generate all of the periodic solutions to the Riccati differential

equation (2.15).

Since the initial time, to, is arbitrary, the algebraic

expression (4.16) is valid for any time. The time relationships

for the coefficients of P are determined using the similarity trans-

formation (3.63) when the monodromy matrix is known for some initial
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time, tl, and period T. The coefficients are then the appropriate

blocks of the resultant, time-varying monodromy matrix,

r(T,t) =0tt1)(~ 4 tt1,(.7

where the time t0 has been replaced by t to emphasize the variability

in time. In this manner, the Riccati variable may be determined for

any time using a given monodromy matrix and the transition matrix.

Another useful result of equation (4.16) is derived from a

similarity transformation of the monodromy matrix. An off-diagonal

block of the transformed matrix, partitioned into four (n x n) blocks,

is reduced identically to zero. The relationships and properties

derived from this simple operation are so important to the new develop-

ments in this chapter that the transformation is presented here as a

theorem.

THEOREH 4.1: If a periodic solution to the matrix Riccati

differential equation (2.15) exists with period T (the same or an

integral multiple of the period of the coefficients of P in the equa-

tion), then the monodromy matrix, given by

r(Tt 0) 11 12 (4.18)

r 21 r 22J

is similar to the transformed matrix

LrT 10) r 1 + r 12 P(t 0) r Pt 12 ] (4.19)Lr(T,to0)L' 0 r,~t
o r22-eor 121

• ".1 : : - - T - .i
,

: , . . . J " •. . . . . .
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where the similarity transformation matrix, L, is defined by

L E (4.20)
1-P(t )

and P(t0 ) is the initial value matrix that satisfied the algebraic

Riccati equation (4.16).

PROOF: Perform the matrix operations of the similarity

transformation indicated by the left-hand side of (4.19) where the

inverse of L is

P(to) (

This results in a matrix with the three non-zero blocks of (4.19) and

a term which is the algebraic Riccati equation (4.16) in the remaining

block. Due to the choice of P(t0 ), this block is identically zero and

the transformed matrix is the desired one.

4.2 Eigenvalues and Sufficient Conditions

It was shown in section 3.2 that the monodromy matrix of the

Hamiltonian system defined by the periodic control problem, (1.1)

through (1.3), is symplectic. The resulting properties of the mono-

dromy matrix and those associated with the transformed matrix of

theorem 4.1 from the previous section, restrict the eigenvalues of the

monodromy matrix for optimal solutions. It is shown that, except for
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possibly isolated limit points, local optimal solutions are all un-

stable. The sufficient conditions [141 for a local minimum, presented

in section 2.2, are thus modified by the developments in this section.

Since the monodromy matrix is symplectic, it must satisfy the

relationship (3.14) resulting in the following equation,

r KFT  = K, (4.22)

where K is the fundamental symplectic matrix (3.7). Writing this rela-

tionship in block form, consistent with the partitioning of equation

(4.18), and using equations (3.17) through (3.19) gives

r= r1r , (4.23)

T T
r= r21 22  , (4.24)

r rT - r rT = I. (4.25)11 22 1221

The symplectic property of the monodromy matrix is preserved

through the similarity transformation in the theorem of the preceding

section. This may be demonstrated by showing that the transformed

matrix LrL "1 satisfies the following relationship derived from the

symplectic property (3.14),

(LrL ')K(LrL'I) T  = K. (4.26)

Premultiplying both sides of (4.26) by C and postmultiplying by L-
T

gives

r(L'nT)rT = (LKLT). (4.27)
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If the matrix L is symplectic, then from (3.14) the following equiv-

alent relationships hold,

T -1 -TLKL = K and K = L T , (4.28)

and equation (4.27) reduces to the identity given by (4.22). Perform-

ing the matrix operations indicated by either of equations (4.28)

verifies that both matrices L and LrL are symplectic.

Expressing LrL in the block form (4.19) and expanding

equation (4.26) to obtain relationships between combinations of ele-

ments of the resulting symplectic matrix, as in (3.17) through (3.19),

provides only one new, but very important equation,

[r11 + r12P]r22 -P = I, or

iF2- Pr2T = [l+ 2]-1

fr2 2  Pr12 I [r + r P) .(4.29)

22 1211 12

The significance of this new equation is that it strongly

restricts the eigenvalues of the monodromy matrix corresponding to

real-valued Riccati variable elements. Note that the eigenvalues of

the two matrices, [r11 + r12P] and [r2 2 - PF12] from equations (4.19)

and (4.29), are also the eigenvalues of the monodromy matrix, r, since

eigenvalues are invariant through a similarity transformation, as estab-

lished previously by (3.50). The transformation also assigns the eigen-

values of the monodromy matrix to the two submatrices on the diagonal

of the transformed matrix such that the eigenvalues of one are the

reciprocal of those of the other submatrix..1

I ~ 4 - - I
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By considering small perturbations about the extremal

solution, the restrictions on the eigenvalues due to equation (4.29)

become apparent. The monodromy matrix maps perturbations over one

complete cycle or period. The elements of this matrix (a special case

of the transition matrix) are always real-valued, provided the applica-

tion is physically realizable. Also, the elements of the associated

Riccati matrix must be real-valued for the extremal solutions to be

locally optimizing. As a result each element of the two matrices of

(4.29) must be real-valued, requiring, from (3.44) and (3.45), that

the complex eigenvalues of each matrix must occur in conjugate pairs.

The reciprocal relationship (4.29) between the two matrices requires

that complex eigenvalues of the monodromy matrix, on the unit circle,

must occur in even multiple conjugate pairs, i.e., double conjugate

pairs, quadruple conjugate pairs, and so forth. Generally, this spe-

cial circumstance results at a limit point where coupled eigenvalues

coalesce upon entering or exiting the unit circle.

Periodic solutions are commonly classified as stable when all

eigenvalues of the monodromy matrix lie on the unit circle and unstable

when at least one pair lies off the unit circle. Consequently, locally

optimizing periodic solutions are unstable with the possible exception

of isolated limit points. This statement further restricts the suffi-

cient conditions [141 for a local optimum presented in section 2.2.

A deficiency in the original statement of these conditions is

now examined. Recall from section 3.4 that the monodromy matrix for a

periodic Hamiltionian system always has at least two unity eigenvalues.

.. .... .- , . . . ...
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Due to the relationship (4.29), at least one unity eigenvalue will

occur in each of the submatrices on the diagonal of the transformed

matrix (4.19). Since Z of equation (2.17) is identically equal to

[r 11+ r12P], one of the submatrices of (4.19), the condition (5) of

the sufficiency conditions is never satisfied.

From equation (3.71) the eigenvector corresponding to one of

the unity eigenvalues, is tangent to the reference (extremal) solution

in phase space. As a result, small perturbations along the tangent

path do not change the amplitude or period of the perturbed solution.

The only apparent effect when comparing the perturbed solution to the

unperturbed solution is a time or phase shift. If, as in the general

problem (1.1) through (1.3), the only condition is the periodicity

constraint, the optimal periodic solution is invariant to a perturba-

tion along its tangent.

4.3 Free Period Second Variation Condition

The weak sufficient conditions for optimality derived by

Bittanti, Locatelli, and Maffezzoni [14] for periodic control problems

with fixed period are extended in this section to the class of problems

for which the period is unrestricted. The modified conditions, two of

which are also applicable to the fixed period case, are developed

from the second variation applying results obtained from the Hamilton-

Jacobi theory.

The second variation may be expressed in terms of operations

on the first variation, given by equation (2.8) as follows,
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2 - t=T + d{ H- dT

d2J = d(dJ) = dfdvTW + (VT -- T)dx ) + d} (H-J)dTl
,-- i t = 0 T

di !(Hx+ T) + u + 6 T(HT - i)jdt). (4.30)

T 0 X

The first variation conditions, (2.9) through (2.14), must be satisfied

as well as the following variational constraints,

6x = f 6x + f 6u, (4.31)

dx(T) = dx(0), (4.32)

which are the variations of the system constraints, (1.2) and (1.3),

to the first order.

The expression for the second variation (4.30) may be reduced

in the following manner. Using equations (1.3), (2.13), and (4.32) in

the first term of the expression gives,

SW +(V ) (2dvT  2 hTdT- dAT)dx t=T

.4 ( T 4 X V I t . 1= ( dTOA T I t = o,

tT
S- dTdx (4.33)

T t=O

Using equations (2.11), (2.14), and dJ = 0 in the second term of the

expression (4.30) gives

df'(H-J)dT} = -1 (H-J)dT - (dH-dJ)dT,T T 2  T

T -x l== (Hx+dxl'H) I T.(.4

~ .. 4.
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In the last termh of expression (4.30), using conditions (2.9) through

(2.11), equation (4.31), and integrating by parts the 6iT term gives

df I [EL]dt} = ±dT J [EL~dt + 1[EL~dt tT+ 1T6[ELI dt,
T O T 2 0 T t=o Ti

1(6A T6x) t=T + Tj HXX HX [J 6 dt, (4.35)

T t=O T LH ux uu J16u]
where (ELI = (H x+X )6x + H u6u + 6T T

Combining these results, equations (4.33) through (4.35),

for the second variation provides the following expression,

! ((6XT6x -d tdx T + (H dx + H d T )1tdTJ

T T

20 H T(T) dx(T)
d J = T(dx (T)dTl[HX(T - H x (T)f(T) IdT

+ T~Ix~6~ [Z: :: I[X] dt, (4.37)

subject to the variational constraints given by (4.31) and (4.32).

As in the accessory minimum problem 1151, showing that



58

d2J > 0 for any 6u(t) $ 0 establishes the minimality of the extremal

solution. This may be accomplished by adding to equation (4.37) the

identically zero quantity,

T xPfxX+ f 6u - 6x)dt = 0, (4.38)

where the partial derivatives of f and H are evaluated along the ex-

tremal trajectory, and P is the Riccati variable determined by the

matrix differential equation (4.14). The integral of the resulting

relationship for the second variation can be written as a perfect

square after integrating the 6x term by parts and using equation

(4.14) to appropriately express the coefficients of the variations.

This gives for the second variation

t=T

dj = T {2Hx(T)dx(T)dT - H (T)f(T)dT2- (6xT(t)P(t)bx(t)) }
t=o

1T

4~T6XT6uTF~x+Pf).~ uxPfu]6x] dt, (4.39)+ T 06 x T 6u T I  (fT P+Hux uu fu 
J1[6u

which is commonly expressed in the normed form as,

d2j = 12H(T)dx(T)dT -H (T)f(T)dT
2 _OxT(t)P(t)x(t)) tT

T x xt=0

1 T II T12
+ T~ (H )(f P + Hux)6X + 8uH dt. (4.40)0 uu

The end point expression in (4.40) will be shown to vanish. First the

following relationship must be developed.

M(O) i(O) - P(O) x (0) = 0. (4.41)

- . --.-. " ... ...
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From equation (3.71), the relationship between the monodromy

matrix, a unity eigenvalue, and the associated eigenvector may be
Sexpressed as

ry(O) = y(O), (4.42)

where the eigenvector y(O) is the phase space velocity vector given

by

y(O) = k(o)J (4.43)

Performing a transformation of variables in (4.42) using the

similarity transformation matrix, L, defined by (4.20) provides

the following relationship,

fLFL-1ILy(O) = Ly(O) . (4.44)

By substituting in (4.44) the equivalent expressions given by

(4.19), (4.41), and (4.43), the following matrix equation is obtained,

[11  12 12 [?] = f~j.(4.45)I 0 F- -P

Assume first that A 0 and satisfies the bottom equation

of (4.45), which may be expressed as

Ix22 - PA 12 - I] A = 0 . (4.46)

Premultiplying the upper equation of (4.45) by AT gives the result,
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iT(rl1 + r12P - I)x + Arr12A = O. (4.47)

The first term in this expression is reduced to zero by the following
-1

operations. First, multiply equation (4.46) by (r22 - Pr12) ,

which gives

Ii - (r22 - Pr 1 2) = 0. (4.48)

Using the symplectic property derived in (4.29) for the transformed

monodromy matrix provides

[I - (rll + r12P)T]X = 0, (4.49)

which after transposing becomes

XT(r + r12P - I) = 0. (4.50)

Using this expression reduced equation (4.47) to

7r12 = 0. (4.51)

This equation may be written in terms of the symmetric part of F12,

iT (F 12 + F12  = 0, (4.52)
2

since the result is a scalar. However, in general

(12 +12 ) o (4.53)

2

for 0 , obtained from equation (4.46), which contradicts the
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original supposition; thus

A = 0, (4.54)

justifying the relationship (4.41).

Using the relationship for the variations (1.4), the rela-

tionships (2.9) through (2.10), and the result (4.41); the

end point expression in (4.40) is identically zero, as shown below,

2H 0dxdT - HofodT 2!T 6xTp6xJt. -X axp6xt..,x t=JT tIT t=O'

- Pdx + dxTp - P dT)dT T

0 00 22H dxdT - H f dT2 . (4.55)x X

This leaves for the second variation the squared expression,

d2J ~I(~)1 (fP + H )6x + 6U1  dt. (4.56)0 1Huu

The neighboring optimal control law that causes the second variation

(4.56) to vanish is

6u0  (H0 ) (fu P + H ) 6x. (4.57)
uu u ax

Any other control variation produces a greater cost since from equation

(4.56), d2J i 0.

In order to show that the extremal solution is locally mini-

mizing, it must be shown that there is no neighboring periodic solution

for which the generating variations satisfy the boundary condition

- . . . .: = .. . . . - - ' - " --. . .- . .



62

(4.32) and use the control law (4.57). The boundary condition may be

rewritten using equation (1.4) in (4.32) and recognizing that f is

* periodic with period T,

5x(O) = 6x(T) + f0(O)dT. (4.58)

Using the neighboring optimal control law (4.57) in the dynamic con-

straint equation (4.31) provides the following linear, homogeneous

differential equation for propagating the variation in the state,

8x= [f0 . o o -1 oT o.
S- (Hu) (f p + Hu0)] 6x. (4.59)

This equation, (4.59), is the same as the first of the set

of equations (4.5) with 6A replaced by (4.8). The corresponding

transition matrix from (4.9) may be expressed as

iZ = 11+ 412P, (4.60)

where Z is the coefficient matrix of (4.59), also defined in (2.17).

It was shown in section 4.2 that the transition matrix 1Z1 evaluated

over one period and expressed in terms of elements of the monodromy

matrix, is

0z(T,O) = F 1 + r P(0) ,  (4.67)

and has at least one unity eigenvalue. Relative to this eigenvalue is

the eigenvector f°(0), a vector tangent to the optimal periodic path

at the initial time. This is the final relationship developed at the

end of chapter three.
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The class of all possible neighboring solutions is considered

by examining the initial variation, 6x(O), that generates them. A

variation parallel to the eigenvector f0 (0) and an other one orthogonal

to it are examined. Of concern is whether or not a set of variations

can be found for which the periodicity constraint (4.58), is satisfied

while the control law, (4.57), through the transition matrix (4.61) is

applied. Any initial variation, 6x(O), can be represented by a combi-

nation of these two variations.

The relationship between the initial variation and the vari-

ation corresponding to the extremal (reference) trajectory after one

period is given by

6x(T) = 0z(T,O)6x(O). (4.62)

When the initial variation, 6x(O), is parallel to f0 (O), the relation-

ship (4.62) reduces to

6x(T) = x(O). (4.63)

Applying this result to the constraint (4.58) implies that the period

is unchanged since the initial time is arbitrary, and a non-zero f0 (0)

can always be chosen. The variation at the initial time represents a

change from one point on the extremal path to another point on the

extremal path. Consequently, the component of a variation parallel to

f (0) produces no change in the optimal trajectory.

When the initial variation is orthogonal to f0 (0), it is

found, by applying the relationship (3.42) to each component of 6x(O)

.1 "
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relative to the eigenvectors (basis vectors) of oZ' that 6x(T) is also

orthogonal to f0 (0). Provided the eigenvalues, excluding the unity

eigenvalue corresponding to f0 (0), do not lie on the unit circle, the

following relationship is true for any variation orthogonal to f°(O),

6x(T) # 6x(0). (4.64)

However, because neither variation has a component in the direction of

f0 (0), there is a contradiction between (4.58) and (4.64). Therefore,

with the conditions on the eigenvalues of 4Z stated above, no neighbor-

ing solution can be found which satisfies (4.58) and uses the control

law (4.57). As a result, the extremal solution is a local minimum.

jThe sufficient conditions of Bittanti, Locatelli, and

?faffezzoni [141 for local optima of periodic control problems as mod-

ified and developed in this section are summarized in the following

theorem for either specified or unrestricted period:

THEOREM 4.2. For the periodic control problem defined by

equations (1.1), (1.2), and (1.3), the control u0 (-), a piecewise-

continuous, periodic function of the input space, is a local minimum

if the following conditions are satisfied:

(1) The Euler-Lagrange equations, (2.9) through (2.11),

and the transversality condition (2.13) are satisfied,

where u (.) is a solution to (2.11) for 0 ! t k T and

x0 () and A0 () are the corresponding solutions to the

two-point boundary value problem which results from

introducing u () into (2.9) and (2.10). When the

. . . .

L • . .. ...• .. . =L ........... ..... . . ...
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period is unrestricted, the additional transversality

condition (2.14) must also be satisfied;

(2) The strong form of the Legendre condition is satisfied,

H 0 > 0, for 0 6 t ; T;
uu

(3) A bounded symmetric solution to the Riccati equation

(2.15), exists for 0 ! t T subject to the periodic

boundary condition, (2.16); and

(4) Except for the unity eigenvalue associated with the

eigenvector f0 (0), no eigenvalue of *z(T,O) lies on

the unit 4:ircle.

4.4 A Periodic Regulator

In the previous sections, an open-loop solution to the opti-

mal periodic control problem (1.1), (1.2), and (1.3) was developed.

Examining the restrictions on the eigenvalues of the monodromy matrix,

specified in section 4.2, it is apparent that except for very special

circumstances, the optimal open-loop solution is unstable. In this

section a control strategy, analogous to the static regulator, is

presented which minimizes the cost of holding a perturbed periodic

system near its optimal open-loop trajectory.

Perturbations of a local optimal trajectory may be expressed

in terms of the variational equations (4.5). Using the transformation

matrix (4.21) of Theorem 4.1, a new set of variations may be defined as

[6x(t) 1 F ][Xt)
*(t)J LP) (4.65)

I P I

I-M- [6 (t)]..
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where P(t) is a solution of the Riccati equation (4.14). In terms of

these transformed variables, the variational equations become

6x(t) Z z fu(H O)*fO - xt

uu u (4.66)

L6i*(tJ 0 -zT  6A*(t)

where Z is defined by equation (2.17) and the zero element is an ident-

ity expression of the Riccati equation (4.14). Note that the trans-

formed variation, 6A*(t), is identically zero due to equation (4.8) and

the relationship between variations of the state and co-state (Lagrange

multipliers). Therefore equation (4.66) reduces to

6x(t) = Z 6x(t), (4.67)

where the boundary condition 6x(O) is arbitrary. This equation propa-

gates a perturbation to an optimal trajectory using the control law

(4.57), which was incorporated into the variational equations through

the transformation (4.65).

For the linear regulator problem, as in Bryson and Ho [15],

the coefficients in the variational equations (4.5) are constants.

This is the case for the static equilibrium solutions associated with

the periodic control problem. In addition, the Riccati variable in

(4.65) is a steady state solution of the Riccati equation (4.14).

Therefore Z in (4.55) is also a constant. Provided the system is con-

trollable, then, as in Brockett [361, a solution to P 0 exists such

that the real parts of the eigenvalues of Z are negative and 6x(t) -* 0

as t 4 m. Using this P in the control law, equation (4.59), provides
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the relationship for the static regulator of a linear system,

6u° = -(H')' f Tp6x. (4.68)

Consider now a regulator for an optimal periodic trajectory

(orbit). As indicated in section 4.1, the coefficients of the vari-

ational equation (4.5) are periodic. The relationship, (4.7), for the

transition matrix shows how a perturbation will propagate away from

an optimal orbit in the open loop control no feedback case. Provided

a periodic solution to the Riccati equation (4.14) exists, Theorem 4.1

shows that in terms of the transformed variables (4.65) the propagation

equations (4.7), evaluated over one period, T, becomes

E 6x(T) 1 [F 1 1 + F 1 2 P r 12  1 r 6 x(O)1

6X*(T)J 0 - Pr 6x*(o)J" (4.69)

The initial variation, 6x(O), for (4.57) is arbitrary, and as before

the transformed variation, 6A*(t), is identically zero. Therefore, the

discrete equation (4.69) may be reduced for multiple stages to

'6x(nT) [rll + r2 P] 6x((n-l)T),

d0 - Z 6x((n-I)T),

= [Z] n 6x (0), (4.70)

since the matrix [F1 1 + r12 PI is a constant from stage to stage, its

components having been evaluated at the time of the perturbation. As

in equation (4.67) the optimal control law (4.57) is incorporated in
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the discrete equation (4.70) which propagates perturbations to the

optimal orbit.

In the closed loop (4.58) the optimal orbit forms a natural

limit cycle for state perturbations provided that the eigenvalues

of tZ satisfy Theorem 4.2, condition (5). The components r11

and f12 of oZ in (4.70) are both elements of the monodromy matrix

of the optimal orbit and are uniquely determined by the initial time

associated with the arbitrary state perturbation, 6x(). The remain-

ing component, P, is one of the solutions to the new algebraic

Riccati equation (4.17). Each solution represents an initial condition

which produces a periodic solution to the Riccati differential

equation (4.14). As a result there is a one to one correspondence

between solutions, P, to the algebraic Riccati equation and permis-

sible combinations of the eigenvalues of the monodromy matrix,

4 which comprise the eigenvalues of 4)V Therefore, the periodic regu-

ator is the control law (4.57) determined by the particular solution,

P, to (4.17) for which the eigenvalues of *Z satisfy Theorem 4.2,

condition (5). In some respects this is a generalization of the

linear regLiator problem.

A concept for implementing the periodic regulator may be

developed which exploits two properties of the regulator. First, the

gains for the regulator are dependent on parameters of the reference

(optimal) orbit only. The time of the perturbation may be identified

by a point on the orbit. Therefore, the gains may be computed apriori

relative to states on the reference orbit and stored in a look-up
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table. Second, the closed loop periodic system is invariant to pertur-

bations tangent to the reference orbit. As a result, from an orthog-

onal projection of the perturbed state onto the reference orbit, both

the new perturbation and the corresponding control gains can be deter-

mined for any desired interval along the perturbed path.

II
i 4



CHAPTER 5

AN OPTIMAL PERIODIC CONTROL PROBLEM

A particular optimal periodic control problem is formulated

in this chapter and some preceding results are simplified by exploit-

* ing the order and synmmetry of the problem. The dynamics are chosen to

be simple, consisting of a double integration of the scalar control

variable. The performance index, which is not convex in the state

variables, is constructed to allow optimal periodic solutions for a

range of control variable weighting. The principal objective of

this chapter is to develop an example problem for which a local

optimal periodic solution may be obtained that illustrates some of

the general characteristics of the class of optimal periodic control

problems. Recent efforts are briefly reviewed in the first section to

provide the background from which the present research effort is

motivated. In the next section the example problem is formulated, the

first order necessary conditions are examined, and the frequency test

is applied. Some simplifications of results presented in previous

chapters are developed in section three for fourth order, symmsetric

systems such as the example problem. Finally, in the last section,

an explicit solution to the Riccati equation is derived for any sym-

metric, fourth order, periodic system.95.1 Background
An interesting application of optimal periodic control is

70
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developed in a lengthy controversy [5, 6, 7, 8] over a particular

aerospace problem. The contention pertains to the optimality with

respect to fuel consumption of the steady-state cruise of an aircraft.

4 The results obtained by Speyer [51 stimulated additional work (9],

attempting to find an optimal periodic solution for the cruise segment

of an aircraft flight path. Some of the important aspects of this

aerospace problem are now briefly reviewed to establish the background

and rationale for constructing a new and simpler optimal periodic con-

trol problem. The fabricated problem is thoroughly examined in the

remainder of this work.

Steady-state cruise is established for an aircraft by mini-

mizing its range factor, defined as fuel rate per range rate. All

control variables are held constant when operating at this static

cruise point. A frequently used dynamic model for evaluating aircraft

performance is the energy state model developed by Bryson, Desai, and

Hoffman 1371, where altitude and thrust are control variables. For

many aircraft, this energy state space produces a hodograph which is

not convex. The physical explanation for this is that while maintain-

ing a constant energy, there is one altitude where the aircraft flies

aerodynamically efficient and another altitude where it flies thrust

(or power) efficient. This dichotomy leads to the chattering (or

relaxed) controls solution derived by Gilbert [351.

To eliminate the non-convexity in the hodograph and preserve

an "optimal" steady-state cruise, Schultz and Zagalsky [61 revised the

energy state model so that altitude becomes a state variable while

flight path angle and thrust form the control space. For this model
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the first order conditions are satisfied using controls lying in a

region interior to the control space where the Legendre-Clebsch con-

dition is met only in weak form. This is the result of the

Hamiltonian being a linear function of both control variables and is

called a doubly, singular arc. However, Speyer [7] shows that the

generalized Legendre-Clebsch (or Kelley) condition [38] is not satis-

fied for this case, and therefore, the steady-state cruise arc is

non-optimal.

Schultz 18] once more revised the model; this time so the

flight path angle becomes a state variable, and the angle-of-attack

and thrust form the control space. Now with this model, the Kelley

condition is satisfied. Hence, the performance index with respect

to the controls in the vicinity of the steady-state cruise point

appears to be convex. However, once again Speyer [5] shows that the

static aircraft cruise is non-minimizing. Since the cruise arc in

question is time invariant, a transformation to the frequency domain

can be made which greatly simplifies the Jacobi test, the final and

most difficult condition to apply. Assuming constant mass, infinite

time, and fixed end-points, the frequency test [5, 11, 18] shows that

cyclic solutions produce better performance than the steady-state

solution over the same period. However, the test does not give any

indication of what the optimal path might be and, as yet, this remains

an interesting and unsolved problem [39].

Continuing Speyer's work, Walker [9] searched for an optimal

periodic flight path. However, the standard numerical optimization

techniques he uses, which include steepest ascent and conjugate
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gradient methods, do not converge to a solution. During the initial

research for this dissertation, a similar effort, using a hypersonic

aircraft dynamic model, also failed to converge to a solution. This

experience, as well as the lack of suitable illustrative examples in

the literature, motivated the construction of a less complex problem

for which optimal periodic solutions could be obtained more easily.

The assumption made here is that the characteristics of these optimal

periodic processes are representative of those for the general class

of optimal periodic control problems. The objective ultimately is to

develop techniques suitable for solving problems such as the optimal

cruise trajectory of an aircraft.

5.2 Sample Problem Description

A particular problem has been constructed to represent the

general class of optimal periodic control problems with unrestricted

period as defined in section 1.2. The sample problem is described in

this section and local necessary conditions are formulated in terms

of the parameters of the problem. The steady-state solution of the

problem is examined for optimality using the frequency test.

A statement of the sample problem follows. Find the period,

T, the scalar control, u(.), and the state, x(.), that minimize the

performance index,

(T 2 4 2 21 OXl +x 2 x 2 bu 2

J= + 2+ - dt (5.1)

subject to the second order dynamic constraints,

I - -
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= x2' (5.2)

2= u, (5.3)

and to the periodicity condition applied at the boundary,

x1(T) = x1 (O), (5.4)

x2(T) = x2(O). (5.5)

The performance index (5.1) was constructed so that for

particular conditions, periodic solutions would exist that provided

better performance than the steady-state solution. The negative

quadratic term provides the non-convexity in the performance criterion

required to permit solutions other than the static solution. The

quartic term dominates the quadratic term for large excursions of x2,

thereby bounding the minimizing solutions. The scalar parameter, b,

weighting the control, determines the nature of the local optimal

solutions as will be shown when the frequency test is applied.

First the variational Hamiltonian for this problem, defined

in general by equation (2.2), may be written as

2 4 2 2
2 + 4 2 + - + 2 X2 '+ AU, (5.6)

where A1 and A2 are the Lagrange multipliers associated with the

dynamic constraints (5.2) and (5.3). Reducing the Euler-Lagrange

equations, (2.9) through (2.11), by solving for and eliminating the

WO1
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control, u, results in the following set of nonlinear differential

equations,

1 = x2' (5.7)

12 "2

x - -, (5.8)

-"x 1 , (5.9)

2 - x 3 (5.10)
2 2 2 V7

The periodicity conditions, (5.4) and (5.5), and the transversality

condition (2.13), provide the boundary conditions, rewritten below,

for this two point boundary value problem,

x1(T) = x1(0), (5.11)

x2 (T) : x2 (0), (5.12)

A = X1 (0), (5.13)

x2(T) X2(O). (5.14)

The form of the optimal periodic control is given by

o X2 (5.15)

where A 0 satisfies the above two-point boundary value problem. All
2

solutions to this problem are extrema of the sample optimal periodic

control problem. Also locally optimizing solutions of the problem

must satisfy the additional transversality condition (2.14),

t.-.- .
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H = Jo. (5.16)

This condition extracts from the previously obtained set of all

extrema a subset of which each element has been extremized with

respect to an unconstrained period.

Now consider the second order necessary conditions. By

restricting the control weighting parameter such that b > 0, the

Legendre-Clebsch condition is always satisfied in its strong form,

i.e., H b > 0. The Weierstrass condition is also always satisfied
uu

since the Hamiltonian, (5.6), is regular, i.e., it has only one minimum

with respect to u.

For the sample problem, there is only one steady state solu-

tion which satisfies all of the above necessary conditions for an

optimal solution,

x = x2  u = 0. (5.17)

By using the frequency test [11], the range of the parameter, b, for

which this static path is actually minimizing can be determined. The

matrix expressions, corresponding to those in (2.22) of the frequency

test, in terms of the sample problem are

[ , = [], H = [If 0 0 u0 x

and H (5.18)

where f is the functional representation of the dynamic constraints,

(5.2) and (5.3). The Hermitian matrix (2.23), a form of the second
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variation transformed into the frequency domain, becomes

T[jW _ ~ xj]- u'o Huu (5.19)

1(w) = foT~w - o Ho [jwI - fo] iO+(.9

after eliminating terms multiplied by the zero vector, H The

matrix expression may be further reduced by introducing the remaining

relationships from (5.18) into (5.19), which gives

(w) 1+ b. (5.20)
4=w w

As indicated in section 2.4, the steady state solution is

minimizing if the matrix 11(w) is non-negative definite for all values

of the frequency, w. The minimum value for 11(w) in (5.20) occurs when

w = 42. As a result, when b a k, the matrix 11(w) is non-negative

definite, and the static solution is minimizing for this range of the

parameter, b. However, in the range 0 6 b < k, there are frequencies

for which the matrix is negative. For these values of b, there are

periodic solutions which improve performance. The extraction and char-

acterization of these solutions are important objectives of this work.

Therefore, a thorough, numerical and analytical study of the sample

problem, formulated in this section, is conducted in the remaining

chapters of this work. But first, some special relationships result-

ing from the symmetry and order of the sample problem are developed in

the last two sections of this chapter.

5.3 The Trace of the Monodromy Matrix

The trace of a matrix is an easily obtained and a quite
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powerful indicator of some intrinsic properties of a matrix. Because

of the relationship of the trace and the eigenvalues of a matrix, the

stability of a system associated with the eigenvalues of the matrix

characterizing the system is frequently determined by obtaining its

trace. As was derived in section 4.2 for the general optimal periodic

control problem, locally optimizing solutions, except for isolated

cases, belong to the set of unstable, periodic solutions to the Euler-

Lagrange equations, (2.9) through (2.11). For the case of a fourth

order, symmetric system, this result is demonstrated by a very simple

relationship involving the trace of its monodromy matrix and elements

of the Riccati variable associated with the system.

The sample problem formulated in this chapter generates a

fourth order system of differential equations, (5.7) through (5.10).

The system is symmetric, satisfying the conditions for symmetry given

in appendix B by equation (B.2). The monodromy matrix for the sample

problem, as well as for any other fourth order, symmetric system, may

be expressed by,

a b e f

Frll r 12]  c d -f g
r =1 2 (5.21)

S21 r 22 h i a -c

-i j -b d

This special form of the monodromy matrix for a symmetric system is

derived in appendix B.

It is apparent from examining the monodromy matrix (5.21)

that only its first two columns need be determined to calculate the

r . ... . .. -- . . . . ... . : - . _- _- , '"" -'' . . .. . . .
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trace of the matrix,

trace r = 2(a + d). (5.22)

Using the relationship, (3.48), between the trace and the eigenvalues

of a matrix, the reciprocity property of the eigenvalues of the

transition matrix (section 3.3), and the property that at least two

eigenvalues of the monodromy matrix are unity (section 3.4) permits

expressing the trace of the monodromy matrix (5.22) in terms of one

unknown eigenvalue, p,

2(a + d) = 1 + 1+p + . (5.23)

From the similarity transformation in Theorem 4.1, another

expression for the trace of the monodromy matrix may be written as

follows,

trace r =trace [r11 + r 12P] + trace [r22 - Pr 12]1 (5.24)

where P is the initial value matrix of the Riccati variable. It was

shown in section 4.2 that this similarity transformation also parti-

tions the eigenvalues of r into the two submatrices on the diagonal

of the transformed matrix. The eigenvalues of the submatrix,

r 11 + r 12P] , are the reciprocal of the eigenvalues of the other sub-

matrix, [r - Pr 2 . As a result, an expression for the trace of the

submatrix [r11 + r12PI may be written as

trace r 1+ r 12 Pj = I + 1j. (5.25)I4
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Since the Riccati matrix is symmetric, it can be expressed

in terms of its scalar elements as follows,

rP P1
p = PI P 2  (5.26)

Using equations (5.24) and (5.26) to perform the matrix operations

indicated by equation (5.25) gives the result,

a + d + eP 1 + gP 3  I + P. (5.27)

Subtracting equation (5.27) from (5.23) gives

1
a + d - eP1 - gP 3 = 1 +-. (5.28)

Eliminating the eigenvalue p from the two equations (5.27) and (5.28)

and then rearranging the resulting expression provides the following

useful relationship,

(a + d - 1)2 _ (eP + gP3 )
2 = 1. (5.29)

This equation clearly isolates the range of values that the trace of

the monodromy matrix may assume when the elements of the Riccati matrix

are real. This leads to a necessary condition for local optimality

of extremal solutions to the optimal periodic control problem which

may be expressed in terms of elements of the trace of the monodromy

matrix,

a + d 2. (5.30)

The necessary condition (5.30) for fourth order, symmetric systems
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excludes any solution whose eigenvalues lie on the unit circle at

points other than the critical points, (1,1) or (-1,-i). This is in

full agreement with the more general results derived in section 4.2.

5.4 A Solution to the Riccati Equation

Another important condition for optimality involves the ex-

istance of the Riccati variable over the full time duration spanned by

the optimal solution. When the solution is periodic, only an inter-

val of one period need be considered. In this section the algebraic

Riccati equation, derived in section 4.1, is evaluated for fourth

order, symmetric systems. Two initial value matrices for the Riccati

variable are derived in terms of elements of the monodromy matrix.

These results explicitly determine the only periodic solutions to the

Riccati matrix differential equation (2.15). With the initial condi-

tions, the existance of both sets of Riccati variables over a full

period may be examined by integrating the differential equation.

The algebraic Riccati equation (4.16) provides the general

relationship between the elements of the monodromy matrix and the

initial conditions for periodic solutions to the Riccati differential

equation. This relationship may be specialized for fourth order,

symmetric systems by expanding the algebraic equation, using the par-

ticular expressions for the monodromy matrix and the Riccati matrix

given by equations (5.21) and (5.26). The results of this matrix

equation expansion are expressed below in the equivalent form of four

simultaneous, algebraic scalar equations,
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eP2 + gP2  + 2cP 2  h = 0, (5.31)

"fP2  + eP P + fP1P + SP2P
2 1 2 1 3 g 2P3

* + (d - a)P2 + bP + cP - i 0, (5.32)

fP2 + ePIP - fPPP + gP
2 1 2 13 23

+ (a -d)P 2 + bP1 + cP3 + i = 0, (5.33)

+ 2

eP 2 + gP 3 
+ 2bP 2 j = 0. (5.34)

Because the Riccati matrix is symmetric, there are three unknown ele-

ments in the matrix. Therefore, only three of the above equations are

independent.

A particular combination of these equations results in an

explicit solution for the initial condition of the Riccati variable,

P2 ' expressed in terms of elements of the monodromy matrix only.

Subtracting equation (5.33) from equation (5.32) and multiplying the

result by the monodromy matrix elements e and g produces the follow-

ing equation,

f(2egPiP3) - 2efgP2 + 2eg(d - a)P2 - 2egi = 0. (5.35)

Multiplying equation (5.31) by the elements e and f and adding the

result to that of multiplying equation (5.34) by the elements f and

g gives a second equation,

f(e22 + g 2 p ) + 2efgP2 + 2f(ce + bg)P
f 1  P3  2ef2

f(eh + gj) = 0. (5.36)

I-
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The unknowns, P and P can be eliminated by adding the two equations,

(5.35) and (5.36), and replacing the term involving P1 and P3 in the

result with its equivalent expression,

(eP1 + gP3
)2 = (a + d - 1)2 - 1, (5.37)

derived in the previous section. This results in a simple, algebraic

expression for P2 involving only the elements of the monodromy matrix,

2 2egi + f~eh + gi + 1 - (a+d-1)

2  2 [f(ce + bg) + eg(d - a)] (5.38)

It is interesting that the initial condition for this component of

the Riccati matrix is single-valued. This implies that there is only

one starting condition, P2 9 associated with.each initial condition,

to, for the optimal periodic control problem, that results in a

periodic solution to the corresponding Riccati differential equation.

Expressions for the initial conditions P and P can now be
1 3

obtained by using the value for P2 from equation (5.38) in equations

(5.31) and (5.34), rearranged below,

S -2cP and (5.39)

e

P +r[ - 2bP2 - eP211 (540P 2 i(5.40)

The indeterminacy of the corresponding signs in equations (5.39) and

(5.40) may be alleviated by the following expression relating P1 and

P3 '

-.. ..---. .- . . .
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eP2 + bP 3 =  1l (5.41)
gP 2 + c

This relationship was obtained by adding equations (5.32) and (5.33)

and rearranging the result.

The expressions (5.38) through (5.41) provide all of the

initial conditions which result in a periodic solution to the Riccati

differential equation, (2.15). In general, and at most, there are

two sets of these starting conditions. Corresponding to each set is

a single set of periodic solutions which satisfy the differential

equation. It may be deduced from Theorem 4.1 that the two periodic

matrix solutions have properties that are related to the pairing of

the eigenvalues in the submatrices on the diagonal of the transformed

matrix (4.19). These results are explicitly shown in the numerical

investigation of the next chapter.

Ii

Ii



CHAPTER 6

NUMERICAL INVESTIGATION

A numerical investigation of the sample optimal periodic

control problem illustrates the extraordinary complexity of this class

of optimization problem. Periodic solutions to the Euler-Lagrange

equations are obtained in the first section that are continuously

related forming a one-parameter family of solutions. In section two,

particular solutions are identified as bifurcation points by a measure

of their stability. Additional families of solutions are obtained that

branch from the original family at the bifurcation points, and charac-

teristics that distinguish their solutions are examined. Local minimal

solutions are determined in the next section. The performance index

associated with each periodic extremum is computed and the necessary

condition for optimization with respect to the period is applied. In

section four, the sufficiency condition associated with the existence

of the Riccati variable is examined. Finally, in the last section

the periodic regulator which was developed in chapter four is demon-

strated using the local optimal periodic solution associated with the

principal family.

6.1 Principal Family of Periodic Solutions

The Euler-Lagrange equations in the form of a two-point

boundary value problem, equations (5.7) through (5.14), are solved by

85
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numerical techniques in this section. This problem was constructed

to be as simple as possible and still produce periodic solutions.

However, the resulting solution to the problem is remarkably complex.

An infinity of periodic solutions is shown to exist for the problem

forming one-parameter families. A distinguishing characteristic of

solutions in a family is the number of positive crossings of the axis

in one period. The principal family, which originates at the static

equilibrium solution of the problem, is determined and some character-

istics of its solutions are examined.

An existing computer program, utilizing a "shooting method",

was used to compute the periodic solutions obtained in this work.

The program originally was developed by Roger A. Broucke in his study

of periodic orbits near equilibrium points in the restricted problem

of three bodies [24]. It was designed to find periodic orbits

(solutions) for any fourth order Hamiltonian system, given a set of

initial conditions within the range of convergence for the system.

Suitable initial conditions may be found using one of several search

routines available in the program. After determining a periodic

solution, the program uses an interpolation routine to predict initial

conditions for a neighboring periodic solution. In this manner it de-

termines and follows a family of periodic solutions. The scheme is

analogous to the principal of analytic continuation, described by

Szebehely [23], and it exploits the inherent properties of the

Hamiltonian system and its associated monodromy matrix.

The periodic solutions obtained for this problem are unique-

ly identified by their initial conditions as was expressed previously
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in chapter three. This provides a very useful means of categorizing

results and, in the case of fourth order systems, illustrating them.

In figures 6.1a and 6.1b, plots of the principal family of periodic

solutions are shown. Each point of the plots represents the initial

conditions of a periodic solution to the Euler-Lagrange equations of

the sample problem. In this case, the initial conditions for the

variables x2 and AV, are arbitrarily chosen to be zero. This results

from the order of the system of differential equations being reducible

by two as expressed in chapter three. The remaining two initial

conditions are xi, the abscissa of both graphs, and A2 ' implied by the

Hamiltonian in figure 6.1a and explicitly identified on the ordinate

in figure 6.1b. A control weighting parameter of b = 0.1 has been

used in all examples of this chapter.

The period of the solutions comprising the principal family

ranges continuously from approximately 2.11 to 5.92. The two extrema

correspond to the fast and slow frequencies represented by the eigen-

values of the Euler-Lagrange equations linearized about the static

equilibrium solution. This relationship to the period is shown for x1

in figure 6.2a and for H in figure 6.2b. Traversing the right half

plot of figure 6.1a in a counter-clockwise direction, beginning at

the origin, corresponds to solution with increasing period in figures

6.2a and 6.2b.

6.2 Bifurcation Points and New Families

The stability of a periodic solution is an important inher-

ent characteristic of the solution. It is also a key element in the
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relationship between families of solutions. In this chapter, as in

previous chapters, a periodic solution is stable if no eigenvalue of

its monodromy matrix lies outside the unit circle. Otherwise, it is

unstable. A measure of the stability of a periodic solution is the

stability index, k, which is defined as the trace of the monodromy

matrix of the solution less two, for a fourth order system. An equiv-

alent definition is k equals the sum of the remaining eigenvalues of

the monodromy matrix after eliminating the two unity eigenvalues.

The relationship of the stability index to the stability

of a periodic solution for a fourth order system is identified by the

following inequalities:

k 5 2, stable solution; (6.1)

k > 2, unstable solution. (6.2)

*It is interesting to note that the stability index, k, is precisely

that quantity, a + d, which occurs in the inequality equation (5.30)

expressing a necessary condition for optimality of a symmetric, fourth

order periodic control system.

An important relationship used by H~non [27] and Contopoulos

[261 expresses properties of the solutions of a family in terms of a

critically stable solution, i.e., all eigenvalues equal one. The re-

lationship may be written in terms of critical values of the stability

index,

k = 2 cos(22n), (6.3)
c n
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where a and n are both integers associated with properties of periodic

solutions with stability index equal to k . One importance of this

relationship is that solutions of a family which may be common to

) other branching families can be identified by their stability index.

These common solutions are frequently called bifurcation points.

Some points for the principal family are plotted in figure 6.3 and

are identified by the notation n/rn Fi, where n and m are the integers

above (/m is omitted when m is one), F is the family designator, and

i distinguishes equal critical values. The stable and unstable

solutions of the family are identified by a broken line and a solid

line respectively. The unstable solutions have no bifurcation points,

according to equation (6.3), and they represent extrema of the problem

which also satisfy the necessary condition for optimality, equation

(5.30).

Branching families are found by searching for new periodic

solutions in the vicinity of bifurcation points. The new families are

then traced in the same manner as the principal family. A few new

families branching from the principal family are shown in figure 6.4.

Stable and unstable solutions are again identified by broken and solid

lines respectively. Only the lower half of the plots are shown because

this region provides the solutions of most interest to the optimal

periodic control problem. Solutions that satisfy the necessary

condition for optimal period, H = J 0, and improve performance com-

pared to the steady state must lie in the region H < 0. New families

are identified using their generating bifurcation point identifier

preceded by an F.
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Two additional levels of branching are shown on the plot in

figure 6.5, which is a detailed enlargement of a section of the

previous plot. This process may be continued indefinitely, limited

only by the finite word length of the computer and the persistence

of the investigator. It is quite apparent that large regions of the

phase space are densely packed with families of periodic solutions,

each an extremum of the optimal periodic control problem.

Before proceeding to the next section and further investigat-

ing the sample problem, some important characteristics of the periodic

solutions of a family are examined. A characteristic that distin-

guishes one family from another is the number of axis crossings that

occur in the same direction during one period of a solution. This is

frequently expressed as the number of arcs of a solution. Referring

back to the equation (6.3), the integer, n, is the ratio of the arcs

of a solution on the branching family to the arcs of a solution on the

principal (or branched from) family.

This characteristic is easily discernible in the following

sequence of time history plots and phase plots of solutions represent-

ing different families. In figure 6.6, a time history plot of the

Itvariable x I for three solutions on the principal family are shown.

The plots a, b, and c correspond to solutions at the bifurcation

points 2A, 5/2A, and 1A. This sequence illustrates the variation of

xin amplitude and period along the principal family FA. In figure

6.7, a similar sequence of plots is shown for the branching family

F2A. The evolution of a two arc solution from two periods of a one
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arc solution beginning at the bifurcation point 2A is identifiable in

the sequence of plots a, b, and c. The same sequence of plots for the

family F5/2A is depicted in figure 6.8. Plot a, corresponds to five

periods of the one arc solution at the bifurcation point 5/2A. Plot

c, corresponds to the solution at the bifurcation point 2(5/2A) as

shown on the branching family identified in the detailed enlargement,

figure 6.5. Plot b, is an intermediate solution on the family. The

final time history sequence of plots, figure 6.9, shows the family

F2(5/2A). Two periods of the five arc solution at the bifurcation

point 2(5/2A) are shown in plot a. The remaining two plots, b and c,

show the evolution of a ten arc solution.

A useful and probably more frequently used plot of periodic

solutions is one providing phase space relationships. In figure 6.10,

phase plots relating the variable x2 to X1, corresponding to the

families FA, F2A, F5/2A, and F2(5/2A) are shown in plots a through d

respectively. Each of the four plots represent the corresponding

solutions in plot c, of the previous time history plots.

Considerable additional work has been completed by Henon [27]

and Contopoulos [261 classifying bifurcation points. For certain

conditions, which exist in this problem, trifurcations are predicted.

Frequently, one of the two or three new families is composed of non-

symmetric solutions. For such a case the family does not lie in the

symmetric plane (xi, 0, 0, X2). Further classification of critical

solutions of the first kind (kc = +2) and the second kind (kc = -2)

are summarized in appendix C.
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6.3 Optimized Solutions for Free Period

The necessary condition for an optimal periodic solution when

its period is unconstrained is applied in this section to the extremal

solutions obtained in the previous sections. This condition screens

the infinity of solutions forming families so that only individual

solutions of the families remain. Some interesting observations from

the results obtained that pertain to the performance index are expres-

sed concluding the section.

The performance index is calculated for solutions of the

principal family and the results are plotted in figure 6.11. For

these plots the solid line represents the initial conditions of

periodic solutions to the Euler-Lagrange equations as in figure 6.1a,

where the initial conditions, x 2 and Xare zero, the initial con-

dition x I is directly determined on the abscissa, and the initial

condition X is implied by H on the ordinate. The broken line identi-
2

fies on the ordinate the performance index, associated with each

ii periodic solution corresponding to the initial conditions represented

by x V At the intersection of the two plots is the solution for whichiithe condition H = Jois satisfied. The upper half of the plots, H > 0,
has been omitted to simplify the figure. Similarly, results for family

FlA are plotted in figure 6.12. The expanded ordinate in figure 6.12b

better illustrates the extrema. The two apparent local minima (ex-

cluding those resulting from the symmetry of the problem) for this

family are actually the same solution intersecting the surface of

initial conditions of the plot in two points.

--4
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The performance index as a function of the period is shown

in figure 6.13 on plot a for the principal family FA and on plot b for

the branching family F2A. The extrema of the performance index, deter-

mined from the plots in figure 6.13, agree with the corresponding

results in figures 6.11 and 6.12.

Periodic solutions satisfying all the first order necessary

conditions for a local optimum with unconstrained period are plotted

for the principal family FA and the branch families F2A, F3A, and

F5/2A. In figure 6.14 phase plots relating the variable x 2 to x I are

shown for the four local minimum solutions. A time history of the

control variable corresponding to each of the previous four local min-

imum solutions is plotted in figure 6.15. The initial conditions,

optimal period, and performance index for the local minima of the

four families are summarized in table 6.1.

Concluding this section are three interesting observations

made during the numerical investigation which may or may not be true

in general. First, every periodic solution to the Euler-Lagrange

U equations obtained in this investigation provided an improvement when

compared to the performance index of the steady-state solution.

Second, the performance index is a relative maximum for the branch

family when the Hamiltonian is also an extremum with respect to the

initial condition. Finally, there are no solutions with period less

than that associated with the fast frequency eigenvalue (from linear

analysis about the static equilibriumn point) that improves the steady-

state performance.
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6.4 Sufficiency Condition

The solutions of the previous section must complete one final

check for optimality. The Riccati variable associated with each solu-

tion must exist over a complete period. The existence of the Riccati

variable is examined by two equivalent methods which completes the

test of the sufficiency conditions for optimality of the periodic

control problem expressed by Theorem 4.2.

The initial conditions for each periodic solution of the

Riccati differential equation (2.15) are determined directly from the

algebraic expressions (5.38) through (5.41). Two solutions exist for

fourth order symmetric systems. They are obtained by integrating the

*Riccati equation over one period using the two sets of starting condi-

*tions just obtained. An equivalent procedure involves evaluating the

expression [4ll(t,O) + 01 2 (t,O)P(O)] from equation (4.13), and test-

ing for a zero value. The existence of the Riccati variable is

implied by no zero values in a one period interval.

The Riccati variable corresponding to the optimum periodic

solution of the principal family was found to exist over the one period

interval, thus confirming the local optimality of the solution. The

time histories of the three elements comprising the Ricatti variable

are plotted for both sets of initial conditions in figures 6.16 and

6.17.

Each of the remaining extremal solutions from the previous

section evolved from a branch family. At some point in the one period

interval of each of these extremal solutions, the corresponding Riccati

~ *,
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variable escaped (did not exist). Therefore, these solutions are not

locally optimizing. As a result, out of the many extremal solutions

that have been found for this problem, only the one solution on the

principal family satisfies each condition for local optimality of a

periodic solution with unspecified period.

The existence of the Riccati variable was also examined for

other extrema in the unstable region (stability index, k > 2) of the

principal family and the branch families. The basic results were the

same. Corresponding to extrema of the principal family, the Riccati

variable was found to exist during the entire one period interval for

the sampling of solutions tested. However, corresponding to extrema

of the branch families, the Riccati variable escaped at some time in

the interval for each of the solutions tested.

These results indicate that the extremal solutions in the un-

stable region of the principal family are local optimal solutions with

respect to a specified period. The range of periods corresponding to

$the optimal solutions extend from approximately 2.67 to 4.99. Optimal

solutions for specified periods outside this range are as yet unknown.

If it could be assumed that n cycles of an optimal periodic solution

with respect to a specified period, T, were also optimal for a speci-

fied period, nT, there would still be gaps in the range of periods for

which optimal solutions exist. It is strongly suspected that nonsym-

metric solutions, those whose initial conditions lie outside the sym-

metric surface investigated in this work, will provide additional

local optimal solutions for the problem.

.m
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6.5 Periodic Regulator

A periodic regulator was developed in chapter four using the

neighboring optimal feedback control law, (4.57). In this section,

the regulator is implemented using the optimal periodic solution of

the previous section as the nominal solution. The regulator is tested

by perturbing an initial state and observing the results.

The control diagram for the periodic regulator is shown in

figure 6.18a. The plant (or system) for this problem is defined by

the dynamic equations (5.2) and (5.3) rewritten below,

x x2, (5.2)

x2= U. (5.3)

The gains for the regulator are determined from the optimal neighbor-

ing feedback control law (4.57) rewritten below,

6u 0  = (Huuo (foP + Ho)6x. (4.57)
uu u ux

For this problem the gains reduce t o

G 1- P 1, (6.4)'

where b =0.1 and the elements of the Riccati variable are chosen from

one of the two possible sets shown in figures 6.16 and 6.17. One of

the sets causes a perturbed system to converge back to the nominal

path in a limit cycle; the other causes the system to diverge.

The storage block of the regulator is composed of a look-up
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table and a least squares error measurement algorithm. The optimal

periodic solution from the previous section is used for determining

the nominal values in the table. The terms in the table represent

the nominal path plotted in figure 6.14a, the nominal control plotted

in figure 6.15a, and the gains determined above. The table spans a

full period and each increment represents a time interval. As shown

in figure 6.18b, the error measurement algorithm used is time indepen-

dent. Given the actual state coordinates, the algorithm determines

from the table the nominal path coordinates which represent the short-

est distance between the actual state and the nominal path. The

nominal control and the gains which correspond in the table to the

nominal path coordinates just determined are used in this increment

of the control cycle.

The regulator is demonstrated by initially perturbing the

state and then observing the output of the plant. Two cases are pre-

sented for comparative purposes. For both cases the output of the

plant (actual path) is represented by a broken line and the nominal

path a solid line.

In the first case the periodic regulator is demonstrated by

closing the feedback loop and using the set of divergent gains.

Cooresponding to these gains are the set of Riccati variable elements

shown in figure 6.17. The initial condition, x1 (O), is perturbed by

0.01 per cent. The result, shown in figure 6.19a, illustrates the di-

vergent character of this set of gains.

The final case implements the periodic regulator with its

set of convergent gains. The Riccati variables, shown in figure 6.16,
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are used to determine these gains. For this case the initial condition

is perturbed from the nominal by 50 percent. The strongly convergent

behavior of the periodic regulator is shown in figure 6.19b.

i

41

----1



CHAPTER 7

AN ASYMPTOTIC SOLUTION

An approximate analytical solution to the example problem,

defined in chapter five, is determined in this chapter. Using a per-

turbation technique, the solution is generated in the form of an asymp-

totic series expansion. Both the dependent and independent variables

are expanded about a small perturbation parameter. The success of this

technique is very much dependent on the selection of the functional

form of the parameter. In the first section, the example problem is

reformulated in terms of expanded variables. An expression in the

form of a Fourier series expansion for the solution is determined in

the second section. Then in the following section, the conditions for

an optimal period are applied. This results in asymptotic series

expressions for the optimal path, its period, control, and the asso-

ciated performance index. In the last section of this chapter, the

analytical results are compared with linear extrapolations near the

static equilibrium solution and with numerical results of the previous

chapter in the region near the local minimum operating point.

7.1 Formulation of the Problem

The perturbation technique which is used in this chapter

to determine an approximate analytical solution for the optimal

* periodic control problem, equations (5.1) through (5.5), is most

* 122
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frequently credited to Lindstedt and Poincar [40,41]. Nineteenth

century astronomers, such as Lindstedt (1882), Bohlin (1889), ard

Gylden (1893), developed techniques to avoid the appearance of secular

terms in perturbation solutions of a class of differential equations.

Poincar4 (1892) proved that the expansions obtained by Lindstedt's

technique are asymptotic. In this section, the example problem is

reformulated in a similar manner by expanding the independent variable,

determining a functional relationship for the expansion parameter, and

assuming an asymptotic solution.

To simplify the perturbation analysis, the two point bound-

ary value problem, equations (5.7) through (5.10) is rewritten in the

equivalent form of a single fourth order differential equation,

2 2
-d~ =~-+3-~-- y, (7.1)

dt 4  dt 2  dt dt2

where the new variable is defined by y E xI. The periodicity con-
* dition is applied to y and its first three derivatives at the bound-

ary points corresponding to an unrestricted period, T. The remaining

variables in the original problem may be obtained from the solution

to equation (7.1), its derivatives, and the following relationships

derived from the Euler-Lagrange equations,

x dy (7.2)2 dt'

A2 = t b dyt (7.3)
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dt dt2 (

The general, analytical solution to equation (7.1) developed

by the perturbation technique is assumed to exist in the form,

y(C,T,w) = y0 (T,w) + &yI(T,w) + 2y2(c,w) + ... , (7.5)

where T is the expanded independent variable typically defined by the

expression

t E (I + W + + ... ), (7.6)

w is the infinite set, {w1 , w2 , ...), of undetermined constant parame-

ters which further scale the independent variable in (7.6), and z is

the small, perturbation (expansion) parameter. The general solution,

(7.5), is obtained by sequentially determining the functional represen-

tation of its components related to successive orders of the expansion

parameter. In this manner, the approximation may be developed to what-

ever order is desired.

Before proceeding with the solution development, a particular

solution to equation (7.1) about which the general solution is to be

asymptotically expanded must be selected, and the functional relation-

ship of the expansion parameter to the system parameters must also be

determined. The steady-state solution of the example problem, from

the results in section 5.2 of the frequency test, was shown to be

optimal for values of the control weighting parampeter, b > k. For

values less than this critical value, periodic solutions can be found
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which provide better performance. With the objective of developing a

general solution for the example problem that represents the class of

optimal periodic solutions, an appropriate selection for the particu-

lar solution is the steady-state solution coupled with a functional

relationship for the expansion parameter that expresses the range for

b < k. The following expression for C provides that relationship,

1 - C2  
[

b = 4 (7.7)
4

where c 5 1. The quadratic form of C is required here, as will become

obvious in the next section, to permit forming expressions that annihi-

late secular producing terms in the forcing functions of the expansion.

Now an expression for the differential equation (7.1) may be

established in terms of the expansion parameter &, the expanded time

variable T, and the infinite set of constant, undetermined parameters

w. Since T is linearly related to t, and the parameters & and w are

constants, the derivatives of y(&,T,w) with respect to t in equation

(7.1) are

S~ ddr (7.8)

dt -d dt'

El d(dy T d2Y(d2'
(7.9)

dt2  dTdTT

= d )4 (7.10)
dt4 T4 dt,dt 4  d

J !. . \ j . , . . .. J . •. . . ._ . _ .. .. : = / - . :, ,. .. . .. . .... ... . ......... •... . .. ...... ... ...... ...
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The expressions in the above equations associated with the derivative

of t may be represented by the following infinite series expansion,

dr 1
dtd t I + e w1 +  C 2 " ' "

1 233

SI1 + &2 (W2 -,2) - (wl-2w1w2+w3) + ... , (7.11)

2 2 2(dt) 1 - e2w1 + e (w 1-2w2)

3 O(w31 -6jw2+2w3 ) + ... , (7.12)

L1-)4 e 1 + C 2(low 2_4w.)

dt = 1 2

- S3 (20W-20w 1 2+4w3 ) + ..., (7.13)

i ; Using the above expressions and equation (7.7), which relates the

expansion parameter to the system, permits writing the differential

equation (7.1) in the desired form,

24 d 4  =dt 2  2 2 4 4y, (7.14)
(1-C 4 t - + 12 (44y 7.4

'4\d2 4 2 dt) d) 2 (dt/did[ dc

where, for brevity, the infinite series expansions have not been ex-

plicity included. Analytical expressions for the components of the

approximate solution (7.5) are developed in the next section.

7.2 Development of Extremal Solutions

An approximate, analytical solution to the differential

equation (7.14), which is equivalent to the Euler-Lagrange equations
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of the example problem, is developed in this section. This provides a

general expression for periodic extrema of the optimal periodic

control problem. Then the components of the solution are determined

sequentially by substituting the assumed solution, (7.5), into the

above differential equation, (7.14), and equating like powers of the

expansion parameter, e, in the resulting infinite series expansion.

Operator notation for the derivative with respect to T, i.e., D = d/d!,

is used in the remainder of this chapter as a convenience in represent-

ing lengthy, complex differential equations.

By equating the coefficients of &0 in the expansion of equa-

tion (7.14), the following differential equation for the y0 component

of the general solution is obtained,

D4yo = -4D2YO + ]2(DY0)2D2y0 - 4y0 . (7.15)

As was identified in the previous section, a solution to (7.15) is the

steady-state or static solution,

= Dy0 = D2y 0 = D3y0  = 0. (7.16)

This also represents the particular solution about which the general

solution is expanded.

Differential equations for the remaining components of the

general solution are determined in the same manner as those for y0 "

Each of these differential equations has the following form,

(D4 + D+ = FYi1l.. .,y0), (7.17)
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where F. represents the forcing function of the ith equation in terms

of previously determined components. The left hand side of the equa-

tion, identical for each unknown component y, identifies the charac-

teristic equation. The subscript, i, associated with the unknown

component, yi, and with the forcing function, F., also indicates the

power of the expansion parameter whose coefficients in the infinite

series expansion form the corresponding differential equation (7.17).

Forcing functions associated with the unknown components, yl, through

are listed below after simplifying the expressions by incorporating

the steady-state solution (7.16),

F1 = 0, (7.18)

F 2 = 1D 2(D 2+2)y1, (7.19)

F3  4w I1D
2(D2+2)Y2 + (1-10w1+4w2 )D

4y1

- 12 w )D2y1 + 12(Dy1 )
2D2y1, (7.20)

22 2
F =4w D 2(D +2)y ow 21 +144w )D 4 2

+ 24DY2DyD y1 - 4gWl(Dy 1 ) D Yl

+ (20w -20w w2 +4w3 -4w1 )D4 y

+ (16w 1-w2+8w2)D 2y 1 . (7.21)

1 2i



Expressions corresponding to any desired number of terms in the gen-

eral solution (7.5) may be obtained in the same manner. However, the

forcing function becomes increasingly more complex as additional terms

are added.

To obtain expressions for the components of the general solu-

tion, consider first the solution to the characteristic equation,

Yi = (Ai+ CiT)sin42T + (Bi+ DiT)cosrT (7.22)

where * distinguishes this homogeneous solution from the complete

solution. In order to satisfy the periodicity conditions, the

secular terms in (7.22) must vanish. This requires that the arbitrary

constants C. and D. must be chosen identically zero.

Now consider the contribution to the component solutions

associated with the forcing terms. Combining this particular solution

with the previous homogeneous result (7.22) determines the functional

expression for respective components of the general solution. Since

there is no forcing term associated with the equation for y,, the

expression for this component is

Yl = A sin42c + Bl cosT. (7.23)

The forcing function (7.19) is also zero since (D 2+2 )yl 0. This

yields a similar result for the Y2 component

Y2 = A sinFT + B2 cosNF . (7.24)

Using the results (7.23) and (7.24) in the expression (7.20) for F3

provides the following relationship,

!t
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2 2 2 22
3 -4(4 1-1+3(A1+ I I .]A1ri41+B o4

-12(A2-3B2)A sin342i - 12(3Ai2 B2)Blcos3NF. (7.25)

Observe that the first term in the forcing function is a solution to

the characteristic equation. This will produce a secular term in the

solution Y3 of equation (7.17). Similar secular producing terms occur

in each equation for successive components of y. To satisfy the peri-

odicity condition, the arbitrary constants and undetermined parameters

are restricted in a manner that resultant coefficients of sinfPT and

cos4-2 in each of the corresponding forcing functions are reduced to

zero. The restricting equation generated by the forcing function

(7.25) is

2 2 2 (.6
4w - I + 3(A +B) = . (7.26)

The solution for y3 then becomes

= A3sin41 + B 3cosT - 3 22
3 22

+64(3AI-BI)Bcos34t. (7.27)

Using the preceding results for the components yI' y2, and y3 in the

expression (7.21) for F4 determines a second restricting equation,

3(AIA 2 + B1B2 ) + 2wl(W + 2 = , (7.28)

and a solution Y4 to equation (7.17),

- ~ 4 -
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Y4  = A4sinr~h + B4 cosFT

3 2 2128 [(W A +6A2 )(A
I"B1 )-2A1

B (wlB I+6B2 )Isina
i4

18[1 lBI+6B2 ) B2A B 1 (WA1 +6A2 )Icos32T. (7.29)

As this process is continued, one new restricting equation

is determined for each additional term evaluated in the expansion.

It should be noted that the restricting equation which relates param-

theters through the i term of the expansion is determined from the

forcing function of the differential equation associated with the

coefficients in the expansion of the i+2nd term.

An approximate solution through order 4 may now be written

in the form of equation (7.5) using the component expressions (7.23),

(7.24), (7.27), and (7.29). The resulting expression may be simplified

with essentially no loss in generality by imposing the arbitrary bound-

ary condition y(O) = 0. This fixes the time and phase relationship of

the solution, but it does not effect its amplitude or period. As a

result the approximate solution becomes

y(&,T,w) = EBlCOS'2T + o2sBcosf2T

3 3 3+

: 4[BcosFT2+ 3-(WB 36B12B2)cos34Y, (7.30)

where the expanded time is given through order 9 by
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T t[l &Wl + &2 (W2_W 3 (W3_ wW
12 2 33 12= tl- + (w1-w2) - (Wl-2WlW2+wo3)

4 4 2+ & (Wl-3w w2+ w 3-w4 )]. (7.31)

By rearranging terms in equations (7.30) an expression in the form of

a Fourier series is obtained,

y(e,T,w) = [eB 1 + &
2B2 + &3B3 + E4B4 ]cosl2T

[B 1 + &W( ( 1B+6B2 )]eBlcos3,fTh. (7.32)

Continuing the expansion further produces additional cosine

terms with arguments that are odd integer multiples of 4-2T. An inter-

esting characteristic of the expansion is that the smallest power of

C in the coefficient of cos nuT is the odd integer n. This property

is commonly referred to as the D'Alembert characteristic [42], and it

assures the expansion satisfies the necessary condition for conver-

gence of the series, i.e., the nth term approaches zero as n becomes

increasingly large.

It should be noted at this point that the approximate

solution to order & has 2n unknown parameters, Bk and Wk, where

k = 1, 2, ..., n. However, only n restricting equations relating

these parameters can be determined leaving n of them arbitrary. In

the next section, n additional relationships are determined by apply-

ing the conditions for an optimal period, allowing the parameters to

be evaluated.

-------------------------------------
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7.3 Optimal Solution with Respect to Period

A general expression was derived in the previous section for

extrema of the example optimal periodic control problem. The special

transversality condition (5.16) associated with an unrestricted period

is applied in this section. First an expansion in powers of E is de-

rived for both the variational Hamiltonian and the performance index.

Then the expressions are set equal by equating coefficients of like

powers of &. This results in n new relationships for the parameters of

the system. Combined with the n restricting equations previously

obtained, all 2n parameters in the expression for extrema may be

explicitly determined. As a result, the solution (7.32) represents the

first n terms of an asymptotic expansion that approximates the optimal

solution with respect to an unrestricted period.

The variational Hamiltonaian and the performance index must

be evaluated along the extremal path to properly apply the condition

for optimal period. The extremal path expressed in terms of the

original problem may be determined from the definition y xl, the

extremal solution (7.33), and repeated use of the Euler-Lagrange

equations, (5.7) through (5.10). This results in the following series

expansions which approximate the extremal path,

X1 j + B+c2B2+z3B3]cos2T + E :-BCos342T, (7.33)

x2 =- [eBI+62 (B2-WIB1)+63 (B3-WlB2+(W 2-w2)B1) sin~2T

-C 3 142-B38sin3 T (7.34)

.~6 1 "
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X1 =-1F[BI+C
2 (B2 +WlB1 )+F

3 (B3 +WB 2+w2B1)]sin4
2c

33

e 8 1 sin34ic, (7.35)

X2  ![&B +C (B2"2w B )+3 (B3-2w B2+(3w2"2w 2-1)B1 )Jcos42T

+&3 27 B 3 cos341, (7.36)

where terms of higher order than _3 have been truncated. Using the

expression for the optimal control (5.15), the functional representa-

tion for the expansion parameter (7.7), and the expression (7.36)

provides the series representation of the extrema control

u -2[B +&2 (B2-2w B1)+&3 (B3-2w B2+(3w -2w2-1)B1 )]cos4f2z

.C327 B3cos342. (7.37)

Substituting these expressions in equation (5.6), the follow-

ing general expression for the variational Hamiltonian evaluated along

the extremal path is obtained,

3 2 4 2 29413WB 1 [4wlB 1B2+(2w 2-3Wl)B 1+ B1 ]

+C [2w(B 2 +2B1 B3 - PB)22(9W 2 42 -)B1B2

3 2+(7W 1-6w1w2+w3 )B1]. (7.38)
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The first three restricting equations were used to obtain this simpli-

4fied form of the Hamiltonian. Only terms upto 4 in the expressions

(7.33) through (7.37) were required to obtain the t5 term in (7.38).

Note, too, that the functional representation of the variational

Hamiltonian is a constant expression, as it should be, when evaluated

along an extremal path.

In a similar manner, a general expression for the performance

index evaluated along the extremal path is determined by substituting

(7.33), (7.34), and (7.37) in the expression for the performance index

(5.1) and using the orthogonality characteristics [43] of the sine and

cosine in performing the indicated integration. This results in the

following constant expression,

j = 4 3 4  . 5 3 3 W
1 2 1 2- B1). (7.39)

It is interesting that the improvement in the performance is zero to

the fourth order.

With expressions for the Hamiltonian and the performance

index both evaluated along an extremal path, the condition for optimal

period may be applied. Equating the coefficients of like powers of

in H and J provides the additional equations needed to specify the

remaining arbitrary parameters in the solution. The first three

of these optimal period relationships are:

2 = 0, (7.40)

.17

Il 1
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2 2 4

4wB1B2 + (2w2-3kul)B1 +  B1 =O (7.41)

112 1 (w_2_2) B

2w (B2+2B1B3-B1) - (11W24w -2)B B
13 2 12

+ (9w3-6wlW2 w3 )B1 = 0. (7.42)

The first three restricting equations, (7.26), (7.29), and that

from the expansion to 5 are rewritten below, using the results,

A. = 0 for i = 1, 2, ... , obtained in the previous section by impos-1

ing the boundary condition y(O) 0. The simplified restricting

equations are:

4 2 2 = 0, (7.43)
4w1 - 1+3B =

2 (7.44)

3B1 B2 + 2wI(W 1+2w2 ) = 0,

27 5 2 2
-B, - 24BjB 3 12B 1B281 13 1

2 2 2

- 4B (Wl+12w2w2+8wlw3+4w2) = 0. (7.45)

The six equations, (7.40) through (7.45), may be solved to

obtain values for the constant parameters that determine explicitly

through e the approximate analytical solution that satifies all

the first order necessary conditions for an optimum. Equation (7.40)

allows the choice of either B1 = 0 or wI = 0. The initial choice

leads to B1 = B2 = B3 = 0, which results in the static equilibrium

solution. For e < h, the static solution is a local maximum. For

the second choice, w1 = 0, the parameters are determined to be
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S 1 =0O, B1 = ±" B2 =0O w2  = -
1, 3' 2 ' 2

0w3  , and B = 53 (7.46)
13 192

Note that the parameter B3 has two values. As more terms are

included in the expansion, the additional restricting equations

and the optimal period relationships become increasingly complex.

This results in multiple valued parameters which indicate the

possibility of obtaining analytical expressions for numerous

locally optimal solutions.

Using the values for the parameters listed in (7.46) leads

to the following expressions in terms of C and T for the optimal

path and control,

X = [(43C +3 a 3)cos42T + 3 C3 cos3-j2TI, (7.47)
1 3 192 192

x ;[(Je + 3E3)sinr2T + 32 ' (7.48)
23 192 1r32 /r

= 6 384£ 1152

A t(,r _7-3 &4 3)sin,/T + -3 cs32T], (7490)

r ~ 2 6 384~ 256£c'a4c,(.0

u + 7-3 )cos2T + Co~2) (7.51)

3 6
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where the expanded time may be expressed as T (I + %&2)t. The above

solutions are an approximate analytical representation of the local

minima associated with the principal family of periodic solutions

identified in the previous chapter. In each of these expressions

terms of 4 and higher have been truncated.

In a similar manner, the constant expressions in terms of 6,

for the period, variational Hamiltonian, and performance index that

correspond to the previous minimum solution are found to be

T = nj(l - !e2), and (7.52)

1 4 (7.53)14

H = 3 = - . (7.53)

Terms of order e 6 and higher have been truncated in the derivation of

the last expression.

7.4 Verification of Results

The anlytical results developed in this chapter are verified

in this section. The functional representation of extremal solutions

is compared qualitatively with the numerical results obtained in the

previous chapter. In the region near the static equilibrium point the

extremal solution is compared to the result of a linear analysis about

the same point. Finally, the analytical results obtained in the last

section for the optimal solution are compared with corresponding numer-

ical results of the previous chapter.

.J
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It is interesting that except for the static equilibrium

solution and the the optimal solutions with respect to an unrestricted

period, the constants of the periodic extremal solutions, given by

equations (7.33) through (7.37), are indeterminant. Examining the

extremal solution derived from an expansion up to &n shows that there

are 2n constants to be determined. However, there are only n restrict-

ing equations that provide relationships between these constants. As

a result, n of them may be arbitrarily chosen. This provides for

large regions of the phase space to be densely packed with periodic

extrema as was shown to be the case for the computational results

obtained in the previous chapter. Considering additional higher order

terms in the asymptotic expansion greatly complicates the associated

relationships for determining the parameters. As the restricting

equations and those for optimal period become more complex, the new

constants, determined by these equations become multi-valued. This

in turn leads to the identification of multiple local extrema, each of

which satisfies the optimal period condition. Results obtained numer-

ically in the previous chapter are in agreement.

Now consider the linear region near the static equilibrium

point. Choosing the parameters B2 = B = 0 and allowing B -* 0 in
2 3 1

the expression for the solution restricts it to the region near the

static path. Using these values in the restricting equations, (7.43)

through (7.45), determines the remaining parameters,
1 1

l=+- w' m = .8 3= + 1
- (7.54)

2 2o 3
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The fundamental frequencies defined by the solution given by equa-

3
tions, (7.31) and (7.32) can be written through the c term as

W= 42-(l t e + 3e2 + 5 ~3) (7.55)

Precisely the same result is obtained for the fast and slow

frequencies predicted by the eigenvalues of the linearized Euler-

Lagrange equations. The coefficient matrix for this set of linear

equations is

00 0-1
0 0 0- I[ 5 (7.56)

evaluated at the static equilibrium point. The eigenvalues of the

coefficient matrix are given by

2 1 J±4 -1-b 1]. (7.57)

Using the relationship between the control weighting parameter, b, and

the expansion coefficient, e, then simplifying the result gives the

following expression for the frequency,

w = 4/( ) -. (7.58)

where p = iw. Expanding this expression using the generalized bi-

nomial theorem gives precise agreement with equation (7.55).

a ---
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Finally, a comparison is made in table 7.1 between the asymp-

totic approximation of the optimal solution and the corresponding

computational result for several values of the expansion parameter.

In the table, xi, and X2 identify the initial values of the optimal

periodic solution, where both x2 and X1 have initial value zero. The

optimal period is designated T and the performance index, J.

The results of the asymptotic expansion after three terms

provides excellent agreement with the computational results for the

smaller values of the expansion paramter e. It provides a good first

approximation for large values of C. The agreement obtained is much

better than would be predicted by assuming an accuracy equivalent to

the order of C in the first truncated term.

-~ ~~~~~ ~ ~~~~~~~~~~~~~ ... . . ........ .... .. .... ...... .... , ....
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

An attempt has been made in this study of optimal periodic

control theory to merge pertinent experience and theory from the fields

of analytical dynamics and celestial mechanics with that existing in

the optimization and control co-mmunities. This has resulted in some

important theoretical contributions for this special class of optimal

control problems. It has also developed a general characterization of

optimal periodic control processes evolving from static equilibrium

solutions of this problem. A summary of the more significant results

and recomendations for future study are presented in this chapter.

8.1 Summary of Conclusions

The principal contributions to the general theory of optimal

periodic control are summarized, and particular results of both a nu-

merical and analytical investigation of an optimal periodic control

problem are reviewed in this section. There are two key relationships

developed in this study which are basic to most of the theoretical

results. One is an algebraic equation which relates the initial

conditions for periodic solutions to the Riccati differential equation

with the elements of the monodromy matrix. The other is a particular

similarity transformation of the monodromy matrix which results in a

partitioning of its eigenvalues into the two submatrices on its

principal diagonal.

143
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A relationship between real values of the Riccati variable

and the eignevalues of the monodromy matrix is derived by exploiting

the symplectic properties of the monodromy matrix, and the special

properties of its eigenvalues both preserved through the similarity

transformation. The important conclusion derived from this relation-

ship is that locally optimal periodic solutions of the control problem

are generally unstable. If an eigenvalue associated with an optimal

periodic solution lies on the unit circle at other than I or -1, it

must occur in sets of double conjugate pairs. At the critical points

I and -1, the eigenvalues must occur in coupled pairs.

A deficiency is corrected in the previously existing suffi-

cient conditions for local optimality of periodic control problems

with fixed periods. The specific correction identifies that two unity

eigenvalues are associated with all extrema of the optimal periodic

control problem. This is a property of the monodromy matrix of a

Hamiltonian system such as the Euler-Lagrange equations in the optimal

periodic control problem. The sufficiency conditions are then extend-

ed to include the class of problems for which the period is unrestrict-

ed. The neighboring optimal control law, derived in the above process,

is used to develop a periodic regulator. It optimizes the return path

for small perturbations from the nominal path in a manner analagous to

the static regulator.

Two very interesting and simple results are derived from the

preceding general developments for symmetric, fourth order optimal

control problems. An inequality expression involving only the trace

of the monodromy matrix provides a necessary condition for optimal
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periodic solutions. The second result provides an explicit expression

in terms of elements of the monodromy matrix for the initial conditions

of periodic solutions to the Riccati differential equation. This is

used to show that only two periodic solutions of the Riccati equation

can exist for such a system.

In the second half of this study a particular optimal control

problem, constructed to characterize optima. periodic solutions, is in-

vestigated both numerically and analytically. The remarkable complex-

ity of its solutions is characterized by the numerical results. An

infinity of extremal solutions are found forming continuous, one-

parameter families that densely pack large regions of the phase space.

They intersect at common solutions which may be determined by a measure

of their stability. Characteristics, such as the number of arcs in a

period, are identified to distinguish solutions of different families.

The computer program used in this study exploits these distinguishing

characteristics and obtains extremal solutions by tracing families in

a systematic and predictable manner. Multiple solutions are found that

satisfy the necessary condition for an optimal period. The Riccati

variable associated with these solutions is found to exist over the

full period for only the solution associated with the principal family.

However, it is conjectured that other solutions exist that also satisfy

each condition for local optimality. Similar results for local optima

with specified period are determined.

The optimal periodic control problem is also analyzed using

a perturbation technique which results in reformulating the problem as

an asymptotic expansion. General expressions for the solution's state,
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period and performance index is derived in terms of the independent

variable, time, and an expansion parameter. The expressions are in

the form of a Fourier series with its fundamental frequency and coef-

ficients represented by asymptotic expansions. A comparison of the

analytical results with relatively few terms to the numerical results

is quite good.

8.2 Recommendations for Future Study

There are several avenues along which future effort might be

directed. The principal problem that motivated this study was the

apparent lack of convergence of typical first order numerical optimiza-

tion techniques for particular optimal periodic control problems. The

development of efficient computational algorithms for this class of

optimization problem is an important and fruitful path. Higher order,

more complex systems must be addressed such as in the recent work on a

hypersonic cruise cycling trajectory, by D. Walker [441.

The numerical investigation initiated in this study is

virtually limitless. Solutions with initial conditions lying in only

one region of the initial condition surface of symmetry was investi-

gated in this study. Nonsymmetric solutions exist and theory is avail-

able to predict intersections with symmetric solutions. Also, irregu-

lar families that have no interconnection at all with the principal

families have been shown to exist for other dynamic problems [25].

Additional optimal solutions with greater improvement in performance

my be~ fouoad. Another possible avenue of research is the investigation

of quasi-periodic solutions which may provide better performance for
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the infinite time problem (not addressed in this study) which is a

generalization of a periodic solution of increasingly large period.

The further development of the asymptotic series expansions

should identify additional optimal solutions. It might also lead to

the generalization of the frequency test to determine optimality for

arbitrary extremal trajectories.



APPENDIX A

A SOLUTION TO THE RICCATI DIFFERENTIAL EQUATION

By solving an appropriate set of linear differential

equations, a solution to the following Riccati differential equation

may be obtained,
P(t) = -A T(t)P(t)-P(t)A(t)-P(t)B(t)P(t)+C(t). (A.1)

The following is essentially a restatement of a Lemma and proof

presented by Brockett [36], pages 155-157.

Given the set of 2n linear differential equations,

A(t) B(t) (A.2)

C(t) -AT(t)

let its transition matrix, 0, be partitioned into four n-square sub-

matrices as follows,

! S(t,t 0 ) = 0214 (A.3)

Then a solution to equation (A.1) is

P(t) = [021 + t22P(t0)][11l + 012P(to)]' (A.4)

when the indicated inverse exists.
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In order to show (A.4) is in fact a solution to (A.1), first examine

the boundary conditions. Applying 0(t0,t0) = I to equation (A.4)

gives P(to) = P(t0 ). Clearly the boundary conditions are satisfied.

Substituting (A.4) into (A.1) and reducing the result to an identity

would complete the verification. To simplify the algebra involved in

doing this, first define the n-square matrices X and A by

[xt L(A.5)
A^(t)J "(b21 422 P(to0

Since * is a solution to equation (A.2), the linear combination of

0 in (A.5) is also; hence,

X(t) [AMt B(t) 1 X(t)1
I III(A.6)

A(t) LC(t) -A (tLj LA(t)J

Using X and A from (A.5), the expression for the solution P(t) given

by (A.4) can be written,

P(t) = A(t)X-l(t). (A.7)

Since the time derivative of the inverse of a matrix may be expressed

as

i' (t) = -x'l I)witx'l(t), (A. 8)

the time derivative of equation (A.7) is

k ' A - .. A .. ..-



-~) = A(t)X (t) A(t)X (t)tX- (t) (A.9O)

Using the exp Ces )ions for (t) an A~(t)fro -(.),B n rP(t) froml

Th.4s ithas epneshion th A.9srcdt the expression in (A.1) egeea

asollowotesit euton(~)

kt ~)~)-() TtAtXlt

-AtX tAt)H)-M(.0

AS)-1()~)~)-()

(t) C~t - A(OPt) PWAt) P~tBP~t. (.11

Thu i hs benshwn ha te xprssonin A.)-s te enra



APPENDIX B

THE MONODROMY MATRIX OF A SYMMETRIC SYSTEM

The following derivation of the monodromy matrix for a

symmetric, fourth order system is an extraction from the notes of

Dr. Roger A. Broucke.

Assume a fourth order, dynamical system of the form

= Ux(x,y), x(t+T) = x(t),

U y(x,y), y(t+T) = y(t), (B.1)

where x and y are scalars and U(x,y) is a potential function.

Assume further that the system is symmetric, satisfying

x(-t) = x(t); k(-t) = -k(t),

yC-t) = -y(t); (-t) = k(t), (B.2)

such that the system is invariant. This implies the following rela-

tionship,

U(x,y) = Ux(xy)x(t) + U y(x,y)y(t) = 0. (B.3)

Using equations (B.1) and (B.2) in equation (B.3) results in the fol-

lowing useful expressions,

Ux (x,y) = Ux(x,-y) ,

U y(x,y) = -Uy (x,-y). (B.4)
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The variational equations of (B.1) can be written as

6 U xx 6x + Uxy 6y,

6Y = Uy6x + Uy6y, (B.5)

which applying (B.1) and (B.2) again require that

U xx(X,y) = Uxx(X,-y),

U (X,y) = -U (X,-y),
xy XY

Uy (x,y) =-U x(x,-y),

Uyy(X,y) = U yy(X,-y). (B.6)

Rewriting equations (B.5) in the form of four first order

equations, where

v = 6x,

v2  = 6y,

v3 = 6x,

v4  = 6y. (B.7)

This results in the following set of equations

vl = v3

1 3'

v2  =v,

3 U xxvI + UxyV2'

V4 = Uyxvl + Uyy' (.)
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which in vector notation is

= A V, (B.9)

where V is the vector composed of vi, v2 1 v3, and v4; and A is defined

as

-0 0 1 0

0 0 0 1

A0 (B.10)

U U 0 0xx NY

L yx yy -

Using the symmetry properties (B.6), it is easy to verify that

A(-t) = -BA(t)B, (B.11)

where

1 0 0 0

0 -1 0 0
B =(B.12)

0 0 -1 0

0 0 0 1

Note that B has the following properties:

BTB = I; BT = B "I = B. (B.13)

Consider the transition matrix *(t,O) for this system. It

satisfies the variational equations (B.8)

4(t,O) = A(t)0(t,O). (B.14)

Replacing t by -t and, using the previous symmetry relations, equation

(B.14) becomes

.1i
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i(-t,O) = -A(-t)O(-t,O), (B.15)

which using equation (B.11) can be written

4(-t,O) = BA(t)BO(-t,O) or

B$(-t,O) = A(t)BO(-t,O). (B.16)

This shows BO(-t,O) is a fundamental solution matrix of equation (B.8)

and must be related to the transition matrix (or to any other funda-

mental solution matrix) by post multiplication of a constant matrix,

BO(-t,O) = 0(t,O)C. (B.17)

From the initial conditions the constant matrix C must be B, therefore

the following relationship may be written,

0(-t,O) = BO(tO)B. (B.18)

Finally, these symmetry properties applied at a particular value

of t, equal to one full period T, are considered. From properties of

the mondromy matrix, the following relation may be written,

0(t+T,O) = o(t,O)O(T,O). (B.19)

When t = -T, equation (B.19) reduces to

I = *(-T,O)@(T,O). (B.20)

From equations (B.20) and (B.18), the following may be written,

o-(T,O) = 0(-T,O) = B(T,O)B. (B.21)
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Since the monodromy matrix is symplectic,

0 1(,)= -K* (T,0)K, (B.22)

where K is the fundamental symplectic matrix. Combining equations

(B.21) and (B.22) gives

4(T,O) = -MB'(T,O)BK,

I(T,O) = (BK)40(T,O)(BK), (B.23)

where, from the definitions of B and K,

0 0 1 0

0 0 0 -1
BK (B.24)

1 0i 0 0

Forming the identities which result from equating the sixteen elements

of the resulting two matrices from equation (B.23) establishes six

nontrivial syimmetry relationships for the monodromy matrix, *(T,O),

b'33 il 11 34 21'

-43 = 0~12' 0'44 = 221 (B.25)

' 32 = 410 014 = 23

From these relationships, the monodromy matrix for a sy me tric, fourth

order system may be written in the following form,

--mm--
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a b e f

c d -f g
4b(T,O) =(B. 26)

h i a -c

-i j -b di

This result also shows that only the first two columns

of the monodromy matrix need be computed to obtain the trace of the

matrix.



APPENDIX C

CLASSIFICATION OF CRITICAL SOLUTIONS

Critical points (solutions) of the first and second kinds

are identified and classified in this section for the principal

family of solutions determined in the numerical investigation of

chapter six. This is directly attributable to the work of Hinon

[27] and Contopoulos 1261, studying the stability characteristics

of fourth order periodic systems. No attempt is made to develop or

reproduce the associated theory; only the classification by type of

the critical solutions of the sample problem and the significance are

expressed.

On the principal family, there are four critical points

of the first kind (kc = +2); 1A, IB1, IB2, and 1B3. Three critical

points of the second kind (kc = -2); 2A, 2BI, and 2B2 also exist.

The location of each of these points is shown in figure 6.3 on the

initial condition plot of the principal family. In table C.1 the

initial conditions associated with the critical solutions are

identified. The Hinon matrix and resulting classification type are

specified as well. The Henon matrix is essentially the result of

reducing the order of the system by two. Corresponding to the

off-diagonal elements of this matrix, different types of exchange

of stability are identifiable. For the critical points of the first

kind, each is associated with a particular Hinon type. The critical
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points of the second kind are all of the type not classified by Hinon

(both off-diagonal elements are zero). Contopoulos' classification

type is identified by these cases.

The significance of the classification types is illustrated

in figure C.1 for critical solutions t.f both first and second kinds.

The solid line identifies unstable solutions; the dashed line indicates

the stable solutions; and the dotted line represents nonsymetric

solutions that do not lie in the symetric initial condition surface.

Each critical solution is found at the intersection of families of

solutions or at the stability transition point.

Solutions IA and 1B3 are extremum in energy (Hamilitonian)

and represent only the transition between stable and unstable solutions

on the principal family. No bifurcation occurs at this point as

depicted in figure C.la. Solution IBI is a bifurcation point and is

represented in figure C.lb. The final critical solution of the first

kind, IB2, is shown in figure C.lc. The intersection of a nonsymnetric

family with the principal family is predicted at this point.

The critical solutions of the second kind are all of the

type D', as classified by Contopoulos. The upper half solutions

(H > 0) were not investigated and, therefore, are not further classi-

fied. The solution 2A, shown in figure C.ld, is identified as a tri-

furcation point. The two symmetric families have been traced. The

nonsymmetric family of solutions has not yet been found.

........



160

H H

Il

H H

X1 x

a. Type , PointA 1B d. Type 3, Point B2A

Stbl Or i --------

UIn-symtbie Orbit ....

Figu~re C .2 CLASSIFICATIOT OF CRITICAL POINTTS



SELECTED BIBLIOGRAPHY

1. J.E. Bailey and F.J.M. Horn, "Comparisons Between Two Sufficient
Conditions for Improvement of an Optimal Steady-state Process by
Periodic Operation," Journal of Optimization Theory Applications,
Vol. 7, No. 5 May 1971, pp. 378-385.

2. M. H. I. Baird, "Vibration and Pulsation," British Chemical Engi-
neering, Vol. 2, Jan. 1967, pp. 20-25.

3. "Symposium on Cyclic Processing Operations," Industrial & Engi-
neering Chemistry Process Design and Development, Vol. 6,
Jan. 1967.

4. F. J. M. Horn and R. C. Lin, "Periodic Processes: A Variational
Approach," Industrial & Engineering Chemistry Process Design and
Development, Vol 6, Jan. 1967, pp. 21-30.

5. J. L. Speyer, "Nonoptimality of the Steady-state Cruise for
Aircraft," AIAA Journal, Vol. 14, No. 11, Nov. 1976, pp. 1604-1610.

6. R. L. Schultz and N. R. Zagalsky, "Aircraft Performance Optimiza-
tion," Journal of Aircraft, Vol. 9, Feb. 1972, pp.108-1 14 .

7. J. L. Speyer, "On the Fuel Optimality of Cruise," Journal of Air-
craft, Vol. 10, Dec. 1973, pp. 763-765.

8. R. L. Schultz, "Fuel Optimality of Cruise," Journal of Aircraft,
Vol. II, Sep. 1974, pp. 586-587.

9. B. K. Walker, "Aircraft Fuel Economy Optimization by Periodic
Control," Master's Thesis, Massachusetts Institute of Technology,
1977.

10. H. Fjeld, "Stability and Control of Periodic Processes," Univer-
sity of Trondheim, Norwegian Institute of Technology, Division of
Automatic Control, Report No. 71-52-W, 1971.

11. S. Bittanti, G. Fronza, and G. Guardabassi, "Periodic Control:
A Frequency Domain Approach," IEEE Transaction on Automatic
Control, Vol. AC-18, Feb. 1973, pp. 33-38.

12. J. C. Willems, "Least Squares Stationary Optimal Control and the
Algebraic Riccati Equation," IEEE Transactions on Automatic
Control, Vol. AC-16, Dec. 1971, pp 621-634.

161

1L



162

13. C. Maffezzoni, "Hamilton-Jacobi Theory for Periodic Control Prob-
lems," Journal of Optimization Theory Applications, Vol. 14, No.1,
Jul. 1974, pp. 21-29.

14. S. Bittanti, A. Locatelli, and C. Maffezzoni, "Second-Variation
Methods in Periodic Optimization," Journal of Optimization Theory
& Applications, Vol. 14, No. 1, Jul. 1974, pp. 31-49.

15. A. E. Bryson, Jr. and Y. Ho, Applied Optimal Control, Revised
Printing, John Wiley & Sons, Inc., 1975.

16. E. G. Gilbert, "Optimal Periodic Control: A Solution Set Theory
of Necessary and Sufficient Conditions," Preprint IFAC, 7th Tri-
ennial World Congress, Helsinki, 1978.

17. E. G. Gilbert, "Optimal Periodic Control: A General Theory of
Necessary Conditions," SIAM Journal Control and Optimization,
Vol. 15, No. 5, Aug. 1977, pp. 717-746.

18. D. S. Bernstein and E. G. Gilbert, "Optimal Periodic Control:
The k Test Revisited," draft for publication, Aug. 1978.

19. D. S. Bernstein and E. G. Gilbert, "Optimal Periodic Control:
Second Order Necessary and Sufficient Conditions for Optimality,"
draft for publication, Aug. 1978.

20. G. Guardabassi, A. Locatelli, and S. Rinaldi, "Status of Periodic
Optimization of Dynamical Systems," Journal of Optimization Theory
and Applications, Vol. 14, No. 1, Jul. 1974, pp. 1-20.

21. J. E. Bailey, "Periodic Operation of Chemical Reactors: A Review,"
Chemical Engineering Communication, Vol. 1, 1973, pp. 111-124.

22. H. Poincarq. Les Mgthodes Nouvelles de la Mqcanique Cqleste,
3 Volumes, Gauthiers-Villars, Paris 1892-1899; also Dover Publi-
cations, New York, 1957 and NASA TT F-452, 1967.

23. V. Szebehely, Theory of Orbits, Academic Press, Inc., New York,
N. Y., 1967.

24. R. A. Broucke, "Periodic Orbits in the Restricted Three-Body
Problem with Earth-Moon Masses," Jet Propulsion Laboratory,
TR 32-1168, 1968.

25. G. Contopoulos, "Orbits in Highly Perturbed Dynamical Systems. I.
Periodic Orbits," The Astronomical Journal, Vol. 75, No. 1,
Feb. 1970, pp. 96-107.



163

26. G. Contopoulos, "Orbits in Highly Perturbed Dynamical Systems. II.
Stability of Periodic Orbits," The Astronomical Journal, Vol. 75,
No. 1, Feb. 1970, pp. 108-130.

27. P. M. Hinon, "Exploration Numirique du Problime Restraint II.
Masses Egales, Stabiliti des Orbites Piriodiques," Annales d'
Astrophysigue, Vol. 28, Ado. 6, 1965, pp. 992-1007.

28. L. Meirovitch, Methods of Analytical Dynamics, McGraw-Hill, 1970.

29. I. M. Gelfand and S. V. Fomin, Calculus of Variations (Translated
from Russian by R. A. Silverman), Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1963.

30. J. T. Tou, Modern Control Theory, McGraw Hill, Inc., 1964.

31. S. E. Dreyfus, Dynamic Programming and the Calculus of Variations,
Academic Press, New York, N. Y., 1965.

32. P. Dyer and S. R. McReynolds, The Computation and Theory of
Optimal Control, Academic Press, New York and London, 1970.

33. R. Bellman, Dynamic Programming, Princeton University Press,
Princeton, New Jersey, 1957.

34. R. Bellman and S. E. Dreyfus, Applied Dynamic Programming,
Princeton University Press, Princeton, New Jersey, 1962.

35. E. G. Gilbert, "Vehicle Cruise: Improved Fuel Economy by
Periodic Control", Automatica, Vol. 12, 1976, pp. 159-166.

36. R. W. Brockett, Finite Dimensional Linear Systems, John Wiley and
Sons, Inc., 1970.

37. A. E. Bryson, M. N. Desai, and W. L. Hoffman, "The Energy State
Approximation in Performance Optimization of Supersonic Aircraft,"
Journal of Aircraft, Vol. 6, Nov. - Dec 1969, pp 481-488.

38. D. Bell and D. Jacobson, Singular Optimal Control Problems,
Academic Press, New York, 1975.

39. H. Erzberger and H. Lee, "Constrained Optimum Trajectories with
Specified Range," Journal of Guidance and Control, Vol. 3,
Jan. - Feb. 1980, pp 78-85.

40. A. H. Nayfeh, Perturbation Methods, John Wiley and Sons, Inc.,
1973, page 56.

41. J. D. Cole, Perturbation Methods in Applied Mathematics,
Blaisdell Publishing Co., Waltham, Mass, 1958.



164

42. D. Brouwer and G. W. Clemence, Methods of Celestial Mechanics,
Academic Press, N.Y. Third Printing, 1971, p. 79.

43. R. V. Churchill, Fourier Series and Boundary Value Problems,
McGraw-Hill, 2nd Edition, 1963, Chapter 3.

44. D. E. Walker, "Cyclic Optimization of Hypersonic Cruise,"
Master's Thesis, The University of Texas at Austin, Dec. 1979.

iI

ib


